Главная --> Справочник терминов


Процессов разрушения ния этого процесса при невысоких температурах. Этим методом можно отобрать из нефти и мазута большее количество масляных фракций, чем при обычной термической разгонке, из-за отсутствия процессов разложения углеводородов и коксообра-зования, обычно сопровождающих разделение этих продуктов при высоких температурах. Основным недостатком описанного метода является нечеткое разделение исходного продукта на фракции. Высоких же давлений газа, связанных с использованием углекислого газа и этилена, можно избежать, применив более сильные газовые растворители.

Растения поглощают на свету оксид углерода (IV). Процесс усвоения этого оксида, воды и минеральных солей под действием солнечной энергии с образованием углеводов, белков и жиров называется фотосинтезом. Ежегодно мировая флора потребляет около 10!3 кг углерода. В то же время углекислый газ непрерывно пополняет атмосферу за счет жизнедеятельности животных и растений, промышленной деятельности человека, процессов разложения органических соединений и вулканической активности. В результате происходит постоянный круговорот углерода в природе.

Каталитическое разложение НС1О и гипохлоритов исследовали в водных растворах. Обнаружено увеличение скорости процессов разложения НС1О и гипохлоритов при добавлении в раствор хлоридов щелочных и щелочноземельных металлов [30-32], что объяснено каталитическим влиянием хлорид-иона.

Низший парафиновый углеводород — метан — образуется в природе в результате происходящих под действием бактерий процессов разложения целлюлозы (метановое брожение). Он заключен в пустотах каменноугольных пластов, находится в недрах земли в составе нефтяных газов и, наконец, образуется при процессах сухой перегонки дерева, торфа и угля. Поэтому метан всегда содержится в больших количествах в светильном газе.

Истинная клетчатка занимает по своему количеству первое место среди всех природных органических соединений. По приблизительной оценке количество двуокиси углерода, связанной растениями в виде целлюлозы, достигает 1100 биллионов килограммов, т. е. равно почти половине ее количества, находящегося в атмосфере. Отсюда видно, насколько важно, чтобы целлюлоза в результате естественных процессов разложения быстрее превращалась вновь в основные составные части: двуокись углерода и воду — и тем самым предотвращалась бы возможность постепенного обеднения атмосферы углекислотой.

6) изучение процессов разложения полимеров под влиянием каких-либо химических или физических (УФ-лучи, радиация и т. д.) воздействий.

Однако механизм процессов разложения очень сложен и до конца пока не изучен. Предполагается, что многие пути, по которым протекают процессы разложения, представляют цепные реакции. Занимая по степени окисленности промежуточное

вляет 30-- 80 %) дибутилфталат, диалкилсебацинат, диоктил-капролат и др. Для замедлении и ослабления процессов разложения и структурирования 1IBX при его переработке, хранении к эксплуатации изделий в него вводят стабили.чаторы (металлорганические, эпоксидные, азотсодержащие и фенолыюго типа). В качестве наполнителей (до 20%) к пластизолях используют тонкоизмельченный мел, каолин и тальк. 11игментьг для пласти-золей подбираются с условием, чтобы они были абсолютно нерастворимы в пластификаторах, термостойки, светостойки и инертны к полимеру. В качестве красителей используют фуксин, родамин, лак-рубин и др.

Большое влияние на выход гидроперекиси изопропплбензола оказывают температура процесса и концентрация гидроперекиси в углеводородной фазе. Обычно окисление проводят при ПО— 130° С (при дальнейшем повышении температуры пыход гидроперекиси понижается). Общий выход гидроперекиси понижается также при значительном увеличении ее концентрации, В начальный период окисления изопропилбснзол почти количественно превращается в гидроперекись, при содержании се 20% общин выход составляет около 90%. По мере дальнейшего накопления гидроперекиси в углеводородной фале ВЕЛ ход ее понижается. Уменьшение выхода при возрастании концентрации гидроперекиси и повышении температуры объясняется протеканием вторичных процессов разложения гидроперекиси изопропилПепзола с образованием ицетофе.нпни и метилового спирта

сероводорода от других процессов разложения, например, во-

процессов разложения. Инициатором разложения диазосоли выступает

В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведение полимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред.

В первой части данного раздела были рассмотрены частично кристаллические полимеры (ПЭВП, ПП, ПА). Не меньшее внимание в литературе уделяется морфологии поверхности разрушения стеклообразных полимеров. Во многих исследованиях трещин серебра для объяснения их роста и разрушения материала [76—177] используется фрактография. Фрактографиче-ские исследования процессов разрушения ПС описаны в работах [106, 115, 132, 150, 155, 169, 191, 194, 199], ПММА —в работах [61, 66, 197, 200], ПВХ —в работах [198, 208] и ПК —в работе [196].

Второе направление, называемое пассивным, основано на регистрации акустической эмиссии (потрескивания и шумов), возникающей в материалах при деформировании. Появление такого потрескивания свидетельствует о превышении напряжений над прочностью материала в определенной точке образца, что приводит к образованию микротрещин и разрывов. При этом освобождается часть упругой энергии, вызывающая колебания среды. Эти колебания представляют собой сейсмоакустический импульс, распространяющийся в среде в виде постепенно затухающей мик-росейсмнческой волны. Отсюда следует, что метод акустической эмиссии может быть использован для прогнозирования процессов разрушения материалов. Как показали исследования, наиболее перспективно применение этого метода для материалов гетерогенных, в первую очередь, композитных.

2. Калориметрический метод. Применение калориметрического метода в сочетании с определением работы деформирования материала позволяет рассчитать изменение внутренней и свободной энергии в нем при разрушении, варьировании различных технологических факторов и условий нагружепия. 10. М. Молчановым и Г. А. Молчановой показано наличие корреляции между прочностью образцов и изменением внутренней и свободной энергии., фиксируемой при пробных (полуразрушаютцих) испытаниях. Следовательно, калориметрический метод может быть использован и как средство прогнозирования процессов разрушения материала, и как средство диагностики*) его прочности по результатам пробных нагружений до уровней предварительного нагружепия, составляющих 0,3—0,5 предела кратковременной прочности. В отличие от сейсмоакустического метода, являющегося интегральным средством анализа повреждепности образцов и изделий, калориметрический метод дает локальное представление о процессах разрушения, развивающихся в зоне контакта материала с датчиками. Для производства тепловых измерений разработана и освоена калориметрическая установка УКМ**), которая может быть использована для испытания образцов и натурных изделий.

Кроме деформационных свойств полимеров важными для технологии их получения и эксплуатации являются прочностные свойства. Кинетика процесса разрушения сшитых и несшитых эластомеров, а также процессы их Х-релаксации характеризуются одной и той же энергией активации. Это свидетельствует о том, что в эластомерах кинетику процессов разрушения определяют межмолекулярные, а не химические связи.

Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности: термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала.

В различных физических и структурных состояниях процессы разрушения полимеров характеризуются различными особенностями, причем по мере перехода от низкотемпературных областей к высокотемпературным роль молекулярной подвижности и теплового движения в процессах разрушения приобретает все большее значение. В табл. 11.2 приведена классификация различных процессов разрушения на примере главным образом некристаллических полимеров. Некоторые черты этих механизмов наблюда-

Механизм разрушения, относящийся к группе атермических процессов разрушения, у которых роль теплового движения атомов исключается, реализуется при температурах, близких к О К, или при больших скоростях нагружения (близких к звуковым). В стеклообразном состоянии (ниже температуры стеклования Тс) или в кристаллическом состоянии (ниже температуры плавления Гпл) на-

Деформационные свойства, в том числе механические потери, являются проявлением релаксационных свойств полимеров. Влияние механических потерь на процесс разрушения поставило более широкую проблему о взаимосвязи релаксационных свойств (деформационных) и процессов разрушения в полимерах. Эта важная проблема находится в стадии развития как в теоретическом [10; 11.20], так и в экспериментальном плане [11.21; 11.22]. Так, замечено, что прочность испытывает на температурной зависимости скачкообразные изменения при температурах у- и (3-релаксационных переходов, когда изменяется молекулярная подвижность в цепях полимера. В стеклообразном состоянии существует ряд характерных температур (релаксационных переходов), в которых долговечность претерпевает изменение. Для исследования природы деформации и разрушения полимера в стеклообразном состоянии изучались ползучесть, долговечность, разрывное напряжение и ширина линии ЯМР в широком температурном интервале. Установлены следующие принципиальные положения.

где tp — время до разрушения при заданном произвольном режиме нагружения a=a(t), а тд (а)—долговечность материала, известная при каждом значении напряжения растяжения а (уравнение долговечности). Критерий Бейли вытекает из следующих рассуждений. В каждый момент времени образец разрушается на какую-то долю dtv=dtHjt (a), a сумма всех этих долей вплоть до момента разрушения t=tv равна единице. Здесь применяется принцип суммирования последовательности всех повреждений образца. Этот принцип верен для таких процессов разрушения, когда не происходит обратного процесса — залечивания повреждений. Например, он не верен при малых напряжениях вблизи безопасного напряжения.

Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17; 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик: релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры: бутадиен-стирольный СКС-30 (Тс = —58° С) и бутадиен-метилстирольный СК.МС-10 (Тй=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация).




Преимущественно образуются Приведены температурные Первоначально образуется Приведена структура Приведена зависимость Приведенные уравнения Первоначально образующейся Приведенной температуры Приведенного осмотического

-
Яндекс.Метрика