Главная --> Справочник терминов


Пластических деформаций Если применить любой из упомянутых выше критериев к началу роста трещины серебра в пластине с острым надрезом под действием растяжения, то в обоих случаях следует ожидать мгновенного образования такой трещины, поскольку как oi—ст2, так и е имеет особенность на бесконечно острой вершине трещины (см. (9.1) — (9.3)). Подобные оценки противоречили бы экспериментальным результатам. Маршалл и др. [102], а также Нарисава и др. [127] установили, что это связано с начальным коэффициентом интенсивности напряжений Ко, который управляет процессом начала роста трещины серебра на вершине надреза. В случае ПММА и ПК, погруженных в метанол или керосин, существуют критические значения Km, ниже которых не происходит возникновения трещины серебра и ее роста. Этот факт можно понять с учетом дискретных размеров сегментов цепи и пустот, которые будут формироваться в процессе образования трещины, с учетом того, что плотность накопленной энергии упругой деформации ограничена (рис. 9.3), а также с учетом того, что пластические деформации исключают особенности напряжения. Маршалл и др. [102] на основании своих данных приходят к выводу, что образование трещины серебра происходит в случае, когда в материале у вершины надреза достигаются условия критической деформации или происходит раскрытие трещины.

Рассмотрим частный вариант теории, когда пластические деформации возникают только для состояний с базисными тензорами соц, com, (OIY и не зависят от проекций тензора деформаций на тензоры GUI, coy, covi; тогда зависимость (4.656) преобра-

Пластическая деформация заметно проявляется при температуре выше температуры Тс и становится преобладающим видом деформаций выше температуры текучести Тг Пластические деформации не сопровождаются изменением внутренней энергии твердого тела, поэтому не исчезают и после снятия напряжения. При пластических деформациях происходит скольжение макромолекул относительно друг друга и порядок их взаимного расположения существенно изменяется.

температуре под действием постоянного сжимающего усилия схематично показан на рис. 10. Такой прибор, называемый динамометрическими, или термодинамическими, весами*, напоминает аналитические весы с плечом 1 : 10. Одна чашка весов заменена цилиндрическим грузом, под которым на подъемном подвижном столике устанавливают образец испытуемого полимера (толщина 2—4 мм, диаметр 7 мм). При помощи регулирующего винта столик перемещают до соприкосновения с грузом. Нагрузку, вызывающую сжатие образца, можно изменять. Деформация регистрируется по отклонению стрелки, прикрепленной к концу коромысла весов. Столик с образцом заключен в термостат или криостат. Температура стеклования определяется на кривой «температура— деформация» как интервал перехода от подъема кривой к почти параллельному расположению ее вдоль оси температуры (см. кривую 2 на рис. 9). Выше температуры стеклования в полимере развиваются высокоэластические деформации. Одновременно при повышении температуры полимер приобретает все нарастающую пластичность. По достижении температуры текучести Тт необратимые (пластические) деформации становятся преобладающими.

Скорость кристаллизации достигает максимума при —25:j. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20° он происходит в продолжение года. Растяжение натурального каучука Приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетельствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75".

Переработка поливинилхлорида в изделия, нити, пленки сопряжена с большими трудностями, что объясняется низкой температурой термической деструкции полимера, близкой к области температур, в которой начинают появляться пластические деформации поливинил-

и прочностью, нерастворимостью. Его пластические деформации уменьшаются, а высокоэластичные — возрастают по сравнению с невулканизированным каучуком:

При развитии подобных реакций и межмолекулярного взаимодействия в каучуке все большая часть молекулярных цепей участвует в образовании пространственной структуры. Возникновение единой пространственной структуры приводит к потере растворимости и термопластичности (способности размягчаться при нагревании). Вследствие образования поперечных химических связей между молекулярными цепями и увеличения межмолекулярного взаимодействия затрудняются пластические деформации, связанные со взаимным скольжением молекул; вулканизат становится эластичным.

Упругая деформация имеет место при кратковременном действии деформирующей силы или при многократных знакопеременных деформациях, происходящих с большой частотой при небольшой амплитуде. Чаще всего приходится иметь дело с высокоэластической деформацией резины, величина которой увеличивается при увеличении продолжительности действия деформирующей силы. Пластические деформации характерны для невулканизованного каучука, они возникают в результате взаимного скольжения молекул под действием внешней деформирующей силы. Скольжение молекул у вулканизованного каучука сильно затруднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнителей, почти полностью восстанавливаются после прекращения действия внешней силы. Наблюдаемые при испытании наполненных резин неисчезающие деформации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в него, например, вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т. е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени.

Несовпадение кривых растя-жения и восстановления объяс-няется необратимыми потерями механической энергии, затраченной на преодоление внутреннего трения и пластические деформации, а также отставанием во времени изменения деформации от нагрузки вследствие недостаточности времени для установления равновесия между ними.

Полученное по формуле (5.1) значение 6 сравнивают со значением, вычисленным по формуле, учитывающей чрезмерные пластические деформации

1. Классические теории прочности хрупких тел. Хрупкими будем называть материалы, поведение которых линейно упруго вплоть до разрушения. Традиционно для таких материалов в качестве критериев статической прочности используют критерии, определяющие начальную стадию появления пластических деформаций (критерии текучести) ; эти критерии имеют вид соотношения между компонентами тензора напряжений

Моделирование композиционного материала эквивалентной однородной средой недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам. Естественно, что точное решение подобных задач для неоднородного материала возможно только в редких случаях, поэтому были развиты приближенные методы исследования. Из этих методов наибольшее распространение и обоснование получили методы малого параметра и осреднения, основные идеи которых и будут рассмотрены в данном параграфе.

В настоящее время на практике для описания процесса накопления пластических деформаций используют чаще всего две теории — теорию упруго-пластического течения, основанную па законе градиентальности и развитую в работах Малхерна, Роджерса, Спенсера, Гераковича, Рао, Дворака и ряда других авторов, и деформационную теорию пластичности, развитую в основном в работах Б. Е. Победри. При реализации обоих подходов наиболее важным является вопрос о количестве и структуре совместных инвариантов тензора напряжений и тензора модулей упругости. В общем случае этот вопрос решается на основании соответствующих теорем теории инвариантов. Для частных типов анизотропии инварианты выбираются из соображений удобства. Так, в работах Б. Е. Победри при построении деформационной теории пластичности трансверсалыю изотропного материала использованы следующие инварианты тензора деформаций (ось Ох3 совпадает с осью изотропии) :

Используя гипотезу об аддитивности упругих и пластических деформаций

Я. Рыхлевским недавно была опубликована теория собственных напряженных состояний, в рамках которой, в частности, дано новое решение проблемы выбора инвариантов; им же высказаны соображения о возможности применения данной теории для описания пластичности анизотропных тел. В настоящем параграфе приведено описание некоторых особенностей пластического деформирования анизотропных материалов по теории течения и деформационной теории пластичности с использованием понятия собственных напряженных состояний, введенных Я. Рыхлевским. В частности показано, как учесть отсутствие пластических деформаций при некоторых особых видах напряженного состояния, упрочнение, разупрочнение и зависимость мгновенных упругих модулей от накопленной пластической деформации, а также предложен набор опытов для нахождения определяющих функций в нелинейной области.

где ер — тензор пластических деформаций, в рассматриваемой здесь геометрически линейной теории равный разности тензора полных е и тензора упругих деформаций 8е.

чительные напряжения, нередко приводящие к появлению в них пластических деформаций. Сила, сжимающая контактирующие тела, через фактическую площадь касания передается неровностям, вызывая их деформацию. Деформируясь, отдельные неровности образуют контурную площадь касания. Деформация неровностей, как правило, упругая. Таким образом, при контакте твердых тел следует различать номинальную и образованные вследствие приложения нагрузки контурную и фактическую площади касания. Соответственно отношения нормальной нагрузки к этим площадям называют номинальными, контурными, фактическими нормальными напряжениями на контакте.

Вязкотекучее состояние — одно из структурно-жидких релаксационных состояний полимеров, при котором воздействие на систему механических сил приводит преимущественно к развитию необратимых (пластических) деформаций. Впрочем, это определение, приведенное в [24, т. 1, с. 577], не учитывает рассмотренных выше факторов, связанных со стрелкой действия и релаксационным спектром (см. рис. II.2); определение относится к обычным, условиям воздействия с малой скоростью, когда отклик системы на воздействие в целом неупругий.

работы, возвращенной при сокращении растянутого образца. Часть затраченной механической работы превращается в тепло, что при многократных деформациях обусловливает значительное нагревание резины. Указанное явление объясняется наличием гистерезисных потерь при деформации резины, пластических деформаций и внутреннего трения. : ?, ~

1. Разрушению предшествуют лишь упругие деформации и в зоне разрушения нет следов пластических деформаций

Свойства полимерных материалов можно регулировать, изменяя их состав. Наибольшее влияние на механические свойства оказывают пластификаторы, наполнители, армирующие материалы Введение пластификаторов способствует снижению температуры стеклования полимера (что расширяет температурную область эксплуатации полимерных материалов), но снижает модуль упругости и прочность, увеличивает долю пластических деформаций н текучесть в вязкотекучем состоянии. Влияние наполнителей на прочность полимеров неоднозначно. С одной стороны, введение твердых частиц в полимерную матрицу создает на границе раздела полимер — наполнитель дополнительные перенапряжения (дефектные зоны), которые снижают прочность. Уровень дефектности определяется прочностью связи полимер — наполнитель. С другой стороны, наполнитель изменяет структуру: в наполненных материалах увеличивается доля слабых адсорбционных связей и повышается ориентация макромолекул в направлении действия нагрузки, что способствует росту прочности. В стеклообразном состоянии наполнители снижают прочность, в высокоэластическом —• проявляется их упрочняющая роль; в последнем случае зависимость прочности от содержания наполнителя описывается немонотонной кривой с максимумом при оптимальной концентрации фсгт, которая определяется структурой полимера (в основном гибкостью) к физико-химическими свойствами наполнителя (размером частиц, свойствами их поверхности). Чем ниже гибкость полимера к больше активность наполнителя (например, меньше размер частиц), тем меньше фонт- Снижение прочности при концентрациях наполнителя, превышающих оптимальную, обусловлено уменьшением ориентирующего влияния наполнителя. Это объясняет тот факт, что кристаллизующиеся полимеры или сильно сшитые резины (эбониты) не упрочняются при наполнении.




Процессов замещения Продольной деформации Продольном направлениях Продолжая нагревание Продолжает оставаться Продолжать перемешивание Прекращения выпадения Продолжают прибавлять Продолжительной обработке

-
Яндекс.Метрика