Главная --> Справочник терминов


Промышленного производства Воды в реакционной среде быть не должно, так как N.N'-карбо-нилдиимидазол гидролизуется даже во влажном воздухе (с образованием двуокиси углерода и имидазола)157. Реакция поликонденсации проводится в инертных растворителях (тетрагидрофуран, ме-тиленхлорид)158"160. Образующийся имидазол по окончании реакции удаляют из раствора поликарбоната экстракцией соляной кислотой и водой или другим способом, так как его присутствие даже в небольших количествах приводит к потемнению и разложению поликарбоната в процессе переработки. Реакции ди-(4-оксифенил)-алка-нов с N.N'-карбонилдиимидазолом в расплаве приводят к получению окрашенных низкомолекулярных поликарбонатов вследствие разложения бис-фенолов и поликарбонатов имидазолом142» 158~1во. В настоящее время этот способ получения поликарбонатов промышленного применения не имеет.

Этот способ не нашел широкого промышленного применения. Вследствие сульфирующего действия серной кислоты образуется целый ряд побочных продуктов, которые подвергаются дальнейшим превращениям в высококонденсированные вещества, что усложняет и удорожает очистку дифенилолпропана. К недостаткам способа относится также образование большого количества фенолсодержащих сточных вод и отработанной серной кислоты, загрязненной органическими примесями.

Оптимальные свойства резин различного целевого назначения зависят как от абсолютного количества, так и от соотношения прочных и лабильных межмолекулярных связей [1]. Лабильные связи, образующиеся в процессе серной вулканизации, вследствие высокой реакционной способности снижают термическую и термоокислительную стойкость вулканизатов, являясь одной из важнейших причин их старения [2]. Введение в каучуки карбоксильных групп позволяет создавать сетку из лабильных и одновременно инертных по отношению к углеводородным цепям солевых групп, однако вследствие склонности к скорчингу, быстрого падения физико-механических показателей с ростом температуры и некоторых других недостатков, эти каучуки пока не нашли широкого промышленного применения.

Метод гидролитической поликонденсации не нашел пока промышленного применения. Его использование сдерживается очень высокими требованиями к чистоте диорганодихлорсиланов и трудностью регулирования молекулярной массы полимера.

Гомофункциональная поликонденсация силан- и силоксандио-лов не нашла промышленного применения и используется пока лишь в лабораторных разработках при синтезах новых типов полисилоксанов.

Примером промышленного применения метода анионной полимеризации циклосилоксанов может служить синтез диметил- и ме-тилвинилсилоксановых каучуков СК.ТВ и СКТВ-1 [3]. Равновесную полимеризацию циклосилоксанов проводят при 140 °С в присутствии полидиметилсилоксандиолята калия (ПДСК) в количестве около 0,005% (масс.) (в пересчете на КОН). ПДСК готовят нагреванием при перемешивании диметильного деполимеризата с 5—10% (масс.) твердого КОН. Такой катализатор легко распределяется затем в деполимеризате. Смесь последнего с «виниль-ной шихтой», регулятором молекулярной массы и ПДСК непрерывно подается через подогреватель в тарельчатый осушитель, откуда в токе сухого азота отгоняется часть циклосилоксанов, примерно 5% (масс.), с целью удаления остатков влаги из смеси. Сухая смесь поступает в вертикальную часть шнекового полимеризатора, где при 140 °С начинается ее полимеризация, завершающаяся в нижней, горизонтальной части аппарата, откуда каучук с помощью шнека непрерывно выгружается в тару. Затем его смешивают в вакуум-смесителе с около 0,5% (масс.) аэросила для дезактивации катализатора и при 150—160 °С и остаточном давлении 1,33—2,00 кПа удаляют находившиеся в равновесии с полимером циклосилоксаны, 10—12% (масс.), улавливают их и возвращают в цикл. Горячий полимер выгружают в тару и после охлаждения стрейнируют.

Как видно из .сказанного, творческая мысль исследователей направлена на изыскание новых путей разделения, предусматривающих выделение из газовых смесей углеводородов высокой чистоты. Указанные методы еще не нашли широкого промышленного применения, однако уже сейчас в ряде случаев они могут представлять практический интерес.

В США был разработан новый вариант этого метода, позволяющий получить из СО и Н2 сложную смесь химических соединений, в которую входят спирты, альдегиды, кетоны, кислоты и другие соединения. Указанный метод пока не нашел еще промышленного применения, но в этом направлении продолжаются усиленные научные исследования.

Наиболее легко разрешимой в силу существенного различия свойств является задача тонкой очистки бензола от сероуглерода. Для этой цели пригодны, например, методы химической очистки— растворами спиртовой щелочи [1], диметиламином, диэтиламином, пиперидином в сочетании с водной щелочью [2, 3], а также адсорбционной очистки [4]. Несмотря на относительную простоту упомянутых методов и надежно обеспечиваемую ими требуемую глубину очистки, они не нашли промышленного применения в коксохимической промышленности. Причина состояла в том, что эту же задачу оказалось возможным решить методом ректификации без введения дополнительных стадий очистки [5, 6]. При отборе головной фракции сырого бензола на колоннах эффективностью 40—45 тарелок получается бензол с содержанием сероуглерода не более 0,0001% [7]. Естественно, ректификация получила исключительное распространение для удаления сероуглерода, поскольку одновременно сырой бензол очищался от циклопентадие-на и основной массы примесей насыщенного характера. Еще более глубокая очистка бензола от сероуглерода, в случае необходимости, может быть обеспечена некоторым повышением эффектив--жюш колонны для удаления сероуглерода (сероуглеродной) или повторной ректификацией бензола с отбором головной фракции после его очистки от тиофена.

Предложенные для химической очистки реагенты, главным образом, кислотного характера (такие, как хлористый алюминий, фтористый водород, трехфтористый бор, монтмориллонитовые глины и др.) не обеспечивают необходимой глубины очистки. Кроме того, эти методы отличаются длительностью и многократностью операций обработки продукта, тщательностью обезвоживания сырья, сложными условиями обработки и т. п. Поэтому они не получили промышленного применения.

Хотя кристаллизация обеспечивает высокое качество бензола (в том числе по содержанию индивидуальных примесей), метод; не получил широкого промышленного применения. Он является энергоемким и сложным из-за необходимости проведения в две стадии и применения специальной нетиповой аппаратуры из высоколегированной стали [78]. Известно, что метод применялся на одной установке в Англии [85] в сочетании с методом химической очистки бензола от других примесей.

/ — формулирование проблемы; 2 — поиск новых процессов; 3 — лабораторная стадия разработки процессов; 4 — проектирование и строительство опытно-промышленной установки; 5 — опытно-промышленная стадия разработки процессов; 6 — утверждение ассигнований на промышленное производство; 7 — проектирование и строительство промышленного производства; 8 — приемка производства; 9 — пуск производства

Обязательным условием общего системного анализа технологического процесса является количественное описание взаимосвязей потоков сырья, продуктов, вспомогательных веществ и отходов на протяжении всего процесса. Общепринятым сжатым методом такого описания является схема потоков. Количественная схема также является результатом абстрагирования от реальной действительности и соответствует текущему уровню знаний о процессе. Кроме того, количественные величины относятся только к одной совокупности условий, вследствие чего они мало говорят о влиянии изменения входных потоков, а также рабочих условий на выходные параметры. При наличии необходимых данных можно составить схемы материальных потоков по альтернативным вариантам сочетания входных переменных и рабочих условий. Таким образом, при построении моделей процесса основная проблема заключается в описании аппаратов, входящих в технологическую схему производства, с помощью систем уравнений, достаточно простых для того, чтобы задача составления полной схемы материальных потоков оставалась практически разрешимой. Для решения задач масштабирования и получения надежной информации для проектирования нового промышленного производства и последующего управления им важное значение имеет опытно-промышленная стадия разработки процесса.

Казалось бы, наличие математической модели позволяет непосредственно приступить к проектированию промышленного производства, однако создаваемые модели редко обладают требуемой для этого надежностью и, кроме того, некоторые процессы и оборудование не поддаются математическому моделированию вообще.

К проектированию опытно-промышленной установки должны привлекаться специалисты, которые будут заниматься проектированием промышленного производства. 236

Метод промышленного производства синтетического изопро-пилового спирта (изопропанола) сернокислотной гидратацией пропилена был разработан еще в 20-х годах. Тогда же-были построены первые промышленные установки. В настоящее время изопропанол вырабатывают целиком из нефтехимического сырья.

До последнего времени нормальный пропиловый спирт не получил широкого распространения. Это вызвано отсутствием специфических областей применения и относительно высокой стоимостью производства к-пропанола. Тем не менее в настоящее время возникла необходимость организации крупнотоннажного промышленного производства w-пропанола для нужд различных •отраслей химической промышленности. В непосредственной связи <с проблемой производства и применения к-пропанола находится проблема производства пропионового альдегида, значение которого в промышленности органического синтеза заметно возросло. В годы второй мировой войны значительная часть к-пропанола, получаемого на установках синтеза спиртов из окиси углерода и водорода, перерабатывалась в пропионовый альдегид. Последний направлялся на синтез триметилолэтана (метриола) — трехатомного спирта, заменяющего глицерин.

Посвящается 100-летию со дня рождения основоположника промышленного производства синтетического каучука — академика

В 1974 г. научная общественность Советского Союза широко тила столетие со дня рождения выдающегося ученого академика С. В. Лебедева, с именем которого неразрывно связано успешное решение проблемы синтеза и создания в СССР первого в мире крупного промышленного производства синтетического каучука.

Не многим более сорока лет прошло со времени организации в СССР первого в мире крупного промышленного производства синтетического каучука по методу академика С. В. Лебедева. Это выдающееся научно-техническое достижение оказало большое влияние на последующее развитие научных исследований в области химии и физики полимеров, обусловившее бурный рост производства и применения синтетических эластомеров.

Одновременно с синтезом изопренового каучука под руководством Б. А. Долгоплоска разрабатывался процесс получения цис-1,4-полибутадиена, также завершившийся организацией промышленного производства каучука СКД в 1964 г.

Организация промышленного производства стереорегулярных каучуков СКИ-3 и СКД явилась новым крупным научно-техническим достижением отечественной науки и определила дальнейший этап в развитии промышленности синтетического каучука в СССР.




Получаются нагреванием Получаются окислением Получаются преимущественно Промежуточно образующееся Получаются соединения Получаются сульфокислоты Получаются замещенные Получения четвертичных Получения этилбензола

-
Яндекс.Метрика