Главная --> Справочник терминов


Полимерного состояния Деформация смоляной фазы осуществляется лишь тогда, когда силы взаимодействия частиц смоляного наполнителя с каучуком будут велики, но не будут превышать энергию когезии смоляной фазы. Такую связь частиц полимерного наполнителя с каучуком обеспечивают адгезионные силы, однако значительное влияние оказывает и совулканизация смоляных частиц с каучуком. Резкая разница, например, остаточной деформации и сопротивления раздиру между полистиролом (насыщенным полимером) и сополимером стирола с 5% бутадиена видна на рис. 35. С увеличением содержания стирола в высокостирольной смоле при равном общем содержании стирола у всех вулканизатов резко повышается остаточная деформация, что объясняется деформацией смоляной фазы и возрастанием гистерезисных свойств каучуко-смоляных структур за счет прочного связывания каучука с высокостирольным поли-

Деформация смоляной фазы осуществляется лишь тогда, когда силы взаимодействия частиц смоляного наполнителя с каучуком будут велики, но не будут превышать энергию когезии смоляной фазы. Такую связь частиц полимерного наполнителя с каучуком обеспечивают адгезионные силы, однако значительное влияние оказывает и совулканизация смоляных частиц с каучуком. Резкая разница, например, остаточной деформации и сопротивления раздиру между полистиролом (насыщенным полимером) и сополимером стирола с 5% бутадиена видна на рис. 35. С увеличением содержания стирола в высокостирольной смоле при равном общем содержании стирола у всех вулканизатов резко повышается остаточная деформация, что объясняется деформацией смоляной фазы и возрастанием гистерезисных свойств каучуко-смоляных структур за счет прочного связывания каучука с высокостирольным поли-

В отличие от систем, наполненных или армированных минеральным наполнителем, в системах, армированных полимерными наполнителями, характер изменения морфологии связующего определяется возможностью диффузии связующего на границе раздела в дефектные области армирующего полимерного материала. При изучении [100] системы на основе эпоксидной смолы или анилино-фенолоформальдегидной смолы, армированной вискозными или капроновыми волокнами, было найдено, что при введении волокна на электронно-микроскопических снимках обнаруживаются две зоны: собственно связующее и волокно с типичной морфологией ориентированного состояния (ламеллярные паракристаллы). Четкая граница раздела фаз отсутствует, хотя и имеется четкий оптический контраст, обусловленный структурной неоднородностью наполнителя, кристаллические элементы которого остаются без изменений. Для связующего, находящегося в контакте с волокном, характерна более однородная и состоящая из более мелких, образований структура. Это связано с тем, что влияние поверхности на релаксационные процессы препятствует агрегации структурных элементов связующего в более крупные образования. Вместе с тем в случае полимерного наполнителя связующее оказывает влияние на морфологию наполнителя.

С точки зрения повышения концентрации граничных слоев с увеличением концентрации наполнителя следовало бы ожидать закономерного расположения спектральных кривых. На рис. III. 34 такая закономерность действительно прослеживается, но она оказалась сложнее, чем можно было ожидать. Действительно, непосредственно из рис. III. 34 видно, что по мере увеличения концентрации наполнителя правые части спектра сдвигаются в сторону больших времен. Это свидетельствует о том, что» спектры граничных слоев связующего, отвержденного в присутствии наполнителя, существенно нетождественны спектрам полимерного наполнителя той же природы. С целью упрощения анализа рассмотрим концен-

Другой особенностью взаимодействия, особенно при получении смесей полимеров, является возможность образования химических связей между поверхностью полимерного наполнителя и связующего вследствие протекания либо процессов механодеструкции при смешении, либо передачи цепи на полимерный наполнитель при

При рассмотрении свойств полимеров, наполненных дисперсными минеральными наполнителями, было показано, что под влиянием поверхности наполнителя происходит заметное изменение свойств поверхностного слоя полимерной матрицы. При использовании полимерных наполнителей следует ожидать, что свойства поверхностного слоя полимерного наполнителя могут изменяться под влиянием полимерной матрицы даже в тех случаях, когда невозможно образование переходного слоя, рассмотренного ранее.

ная композиция — сополимер. Однако в сильно сшитом связующем ^проявляется уменьшение сегментальной подвижности полимерной подложки (поликапроамида) под влиянием отвержден-ного эпоксидного компаунда (15% полиэтиленполиамина), как это видно из зависимости Т\ от температуры (рис. V. 12). При этом такой компаунд размягчается под влиянием поликапроамида: процесс релаксации, проявляющийся при 85 °С, смещается в сторону низких температур примерно на 8°С. Отсюда следует, что в системах, где роль наполнителя играет полимер, в одних случаях полимерный наполнитель ограничивает подвижность молекул связующего, одновременно размягчаясь сам, в других — при очень жестком связующем — оно выступает в роли «твердой подложки», ограничивающей подвижность цепей полимерного наполнителя, несколько размягчаясь при этом:

В рассматриваемых выше случаях осуществляется взаимное влияние контактирующих поверхностей на процессы структуросб-разования в каждом из компонентов смеси. Подвижность молекул аморфного компонента в граничном слое вблизи поверхности кристаллического полимерного наполнителя в значительной степени подавлена, что приводит к появлению более рыхлых образований в этом слое. В свою очередь, кристаллический компонент также претерпевает изменения в результате перехода в граничные слои все большего количества макромолекул и вследствие возрастания дефектности кристаллических образований. Свойства полимерной композиции определяются, по-видимому, соотношением содержаний компонентов в граничных слоях и в объеме, как это наблюдалось для минеральных наполнителей.

При рассмотрении релаксационных свойств полимеров, напол-.ненных минеральными наполнителями, нами было установлено существование суперпозиции данных о концентрации наполнителя. Преимущество такого подхода заключается в том, что он основан на общих теоретических положениях и не связан с выбором какой-либо определенной модели структуры композиционного материала и с необходимостью специального учета взаимодействия на границе раздела фаз и существования переходных слоев. В работе [446] существование такой суперпозиции было подтверждено для систем, содержащих полимерные наполнители; в частности, для эпоксидной смолы ЭД-20 с порошкоббразньш полистиролом. Из данных по амплитуде деформации и напряжения, а также по углу сдвига фаз между ними были1 вычислены температурные зависимости действительной части комплексного модуля сдвига G' наполненных образцов. На рис. V.21 приведена частотная зависимость действительной части комплексного модуля сдвига образцов при различных концентрациях наполнителя. Из рисунка видно, что повышение концентрации полимерного наполнителя сдвигает зависимость lgG' = f(co) в сторону более высоких частот. Аналогичные кривые получены .при других температурах в области а-пере-хода эпоксидной смолы.

новесного модуля высокоэластичности полимерной матрицы от концентрации наполнителя приведена на рис. V. 26. Учитывая, что бе-личина равновесного модуля обратно пропорциональна молекулярной массе отрезка цепи между узлами сетки, из рис. V. 26 можно видеть, что плотность сетки эпоксидной матрицы с повышением концентрации полимерного наполнителя уменьшается.

Для тех же образцов ЭД-20, наполненных ПС, были получены температурные зависимости тангенса угла механических потерь • области температуры стеклования полимерной матрицы (рис. V. 27), Как видно из рисунка, повышение концентрации полимерного наполнителя сдвигает максимум потерь в сторону низких температур." Это свидетельствует о .том, что в образцах с большей степенью наполнения межмолекулярное взаимодействие ослабляется. Это может быть следствием более рыхлой упаковки сегментов в граничном слое.

Основными в структуре полимеров или, точнее, в полимерном состоянии, являются размеры и периодическое или псевдопериодическое (в сополимерах) строение молекул. Здесь особо следует подчеркнуть не всеми понимаемое обстоятельство, что именно линейные цепные макромолекулы — наиболее типичные «выразители» полимерного состояния. К ним примыкают умеренно разветвленные и умеренно сшитые (типа резин) системы, где цепочечная индивидуальность ветвей или участков между узлами сетки в достаточной мере сохраняется.

Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрила-та при температуре ниже Тс. Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) .с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов.

Согласно классификации, предложенной Н. А. Платэ с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества: 1) реакции, присущие только-полимерному состоянию вещества: распад макромолекул на более мелкие образования или до исходных молекул мономеров и меж-макромолекулярные реакции; 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации («эффект соседа»); 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция; 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе; 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов.

14.3. Проявление специфики полимерного состояния вещества в химических реакциях

Одним из важных видов химических превращений полимеров является протекание в них химических реакций при действии механических напряжений. Это связано с возможностью разрыва химических связей в макромолекулах в поле механических сил, а также активирующим действием механических напряжений на некоторые химические реакции функциональных групп макромолекул. Подобные явления наблюдаются при совместном действии химических агрессивных сред на полимеры в механически напряженном их состоянии. Эти дефекты характерны для полимерного состояния вещества и наблюдаются при переработке полимеров и эксплуатации изделий из них.

Итак, расмотренные примеры некоторых реакций химической модификации полимеров показывают широкие возможности изменения химической природы полимеров и создания на их основе материалов с новыми свойствами. При проведении таких реакций необходимо учитывать специфику полимерного состояния и иметь в виду, что неполное превращение реагирующих групп макромолекул является правилом в макромолекулярных реакциях, что приводит к получению конечных продуктов, неоднородных по мо-

14.3. Проявление специфики полимерного состояния вещества в химических реакциях... 220

полимерного состояния [28].

Полимерам присуще резкое различие характера связей между звеньями в целях и между цепями. Как и у низкомолекулярных соединений, в полимерах различают два типа взаимодействий: сильное химическое взаимодействие между атомами в звеньях и между звеньями в цепях - ко-валентные связи; слабое нехимическое взаимодействие между участками цепи (внутримолекулярное) и между цепями (межмолекулярное). По сравнению с химическими связями расстояние, на котором проявляется нехимическое взаимодействие, в два - три раза больше, а его энергия на один -два порядка меньше. Однако у полимеров при высокой молекулярной мае-. се (большом числе звеньев) межмолекулярное взаимодействие приобретает особо важную роль и в значительной степени обусловливает специфический комплекс свойств, характерный для полимерного состояния вещества.

2. Высокоэластическое состояние, в котором возможны колебательные движения звеньев и сегментов, их взаимная подвижность; высокоэластический полимер также находится в твердом агрегатном состоянии; это состояние существует только у полимеров и служит одним из признаков полимерного состояния вещества.

В то же время нельзя не отметить фундаментальность рабет В. А. Каргина и его сотрудников по изучению механических свойств полимеров, которые расширили представления об особенностях природы полимерного состояния вещества, установили ряд новых закономерностей влияния разнообразных факторов на указанные свойства полимеров.




Перегонке жидкостей Промывают метиловым Полимеризации поликонденсации Полимеризации позволяет Полимеризации присоединение Полимеризации пропилена Полимеризации различных Полимеризации существенно Полимеризации винилхлорида

-
Яндекс.Метрика