Главная --> Справочник терминов


Полимеров характерны Растворы жесткоцепных полимеров характеризуются резким изменением вязкости при достижении концентрации, равной Скр (рис. 3.16).

Деформирование полимеров не описывается ни одной из этих крайних схем. Поэтому концентрированные растворы и расплавы полимеров характеризуются различными комбинациями упругих и вязких свойств. В соответствии с этим говорят о вязкоупругих, или упруговязких, системах.

того сополимера может вызвать ее разрушение. Полимакроради-калы, образующиеся в результате облучения пленок полимеров, характеризуются длительной жизнеспособностью, что объясняется их громоздкостью и высокой вязкостью средь;, в которой они возникают. Поэтому можно подвергнуть облучению пленку полимера, вызвать таким способом образование полимакрорадикалов и затем, ввиду длительности их существования, ввести облученную пленку в прививаемый к ней мономер*. Если облучать пленки полимера в воздушной среде, то наряду со свободными полимакрорадикалами образуются и продукты их взаимодействия с кислородом воздуха, т. е. перекисные и гидроперекисные группы. Такие пленки, будучи введены в мономер, инициируют не только привитую сополимеризацию, но и гомополи-меризацию. Облучение пленок в вакууме способствует повышению концентрации полимакрорадикалов, поскольку предотвращается их взаимодействие с кислородом. На рис. 151 показано влияние

Расплавы полимеров характеризуются очень высокими вязко-стями, поэтому неудивительно, что методы создания давления, основанные на использовании величины [V-т], которая пропорциональна вязкости, приобрели большое практическое значение при переработке полимеров. Очевидно, что чем выше вязкость, тем больший градиент давления может быть получен. Таким образом, высокая вязкость расплавов полимеров особенно ценна для создания давления. Устройства для создания давления, или насосы, предназначены для генерации давления (в противовес потере давления при течении по трубам). Эта цель может быть достигнута только при помощи движущейся наружной поверхности, которая соскребает расплав, что приводит к созданию течения, вызываемого трением стенок (разд. 8.13). Характерной чертой этого вязкостного динамического метода создания давления является то, что наружная поверхность движется независимо от движения расплава. Одночервячная экструзия, каландрование и вальцевание иллюстрируют практическое значение этого метода создания давления.

В различных физических и структурных состояниях процессы разрушения полимеров характеризуются различными особенностями, причем по мере перехода от низкотемпературных областей к высокотемпературным роль молекулярной подвижности и теплового движения в процессах разрушения приобретает все большее значение. В табл. 11.2 приведена классификация различных процессов разрушения на примере главным образом некристаллических полимеров. Некоторые черты этих механизмов наблюда-

Обратимые (равновесные) реакции синтеза полимеров характеризуются малыми скоростями и большими значениями энергии активации (80—170 кДж/моль). Необратимые (неравновесные) реакции имеют высокие скорости и малые значения энергии активации (8—42 кДж/моль).

Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки при деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму (конформацию), и так как число возможных кон-формаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров.

Вследствие специфики строений макромолекул и надмолекулярных структур механические свойства полимеров характеризуются рядом особенностей и сильно зависят не тотько от состава и строения по "им ра но и от внешних условий. Работоспособность полимерных материалов во многом определяется ре жимом их деформирования, прежде всего характером действия внешних сн.п. Различают стат-нческне и динамические режимы нагружснин. К стспич спим относят воздействия при постоянных нагрузках или деформациях, а также при небочьших скоростях нагружения к динамическим — ударные или циклические воздействия,

Применение для синтеза алкидных олигомеров и полимеров вместо фталевого ангидрида изофталевой кислоты дает возможность получать на основе этих полимеров лаки воздушной сушки с меньшей продолжительностью высыхания, большими ударной вячкостью, сопротивлением к истиранию и твердостью. Алкидные полимеры, синтезированные ич терс-фталевой и изофталевой кислот, характеризуются большей теплостойкостью, чем соответствующие полимеры ортофталевой кислоты. Значительно улучшаются свойства алкидных полимеров при замене в них фталевого ангидрида гексагидрофталевым ангидридом. Пленки из таких полимеров характеризуются повышенными физико-механическими показателями, а сами олигомеры и полимеры имеют меньшую вязкость, более светлую окраску, меньшее кислотное число, меньшую тенденцию к гелеобразованию, лучшую совместимость с сиккативами.

Реакции мономерных звеньев лигнина, как и у других полимеров, характеризуются дробным поведением. При написании уравнений или схем химических реакций лигнина, вследствие сложности и гетерогенности его строения и состава, их представляют обычно на примере од-

* Здесь волокна, получаемые искусственным путем из полимеров, характеризуются термином «искусственные» для отличия их от ориродных волокон. Менее удачным является принятый в технологической литературе термин «химические волокна», который объединяет искусственные волокна (полученные искусственным путем из природных полимеров) и синтетические волокна (из синтетических «полимеров).

Для многих поликонденсационных полимеров характерны реакции межцепного обмена. Они могут протекать по двум различным механизмам: 1) взаимодействие концевых функциональных групп одной макромолекулы с внутренним звеном другой; 2) взаимодействие между двумя внутренними функциональными группами.

Для подавляющего большинства полимеров характерны хорошие диэлектрические свойства. Наилучшими диэлектрическими свойствами обладают полимеры, структурные звенья которых не содержат полярных групп.

Помутнение поверхности экструдата, как было показано Когс-веллом, Лэмбом [42] и Виноградовым [43], обусловлено действием механизма разрушения расплава на выходе из капилляра и отличает поведение ПЭНП от поведения ПС и ПП. Для указанных полимеров характерны две особенности. Первая — отсутствие разрыва на кривой течения..-С = / (\С) при появлении разрушения поверхности экструдата. Вторая — уменьшение дефектности экструдата при увеличении L/DQ (чего и следовало ожидать, так как местом зарождения дефектов является область входа).

Явление вынужденной эластичности. Для стеклообразного состояния полимеров характерны малые величины деформации при небольших напряжениях Однако в отличие от простых низкомоле-кулярных стекол (канифоль, силикатное стекло и т. п ) стеклообразные полимерьг сохраняют в некотором интервале температур способность подвергаться при приложении больших усилий значительным деформациям, достигающим иногда сотен процентов.

Для растворов полимеров характерны резко отрицательные отклонения от идеальности, что хорошо видно из рис. 151, на котором представлена зависимость относительного давления пара над раствором от мольной доли полимера в растворе. На рис, 152 приведены типичные кривые зависимости относительного давления пара над раствором полимера от состава, выраженного в весовых или объемных долях.

Для линейных полимеров характерны три основных вида формации: упругие, высикоэлас'гические и пластические.

Наряду с реакциями, протекающими без изменения молекулярной массы, для полимеров характерны также реакции, приводящие к изменению степени полимеризации. Их можно разделить на две группы: реакции, при которых молекулярная масса растет и при которых наблюдается ее снижение. К первой группе можно отнести реакции сшивания — соединение макромолекул поперечными связями (реакции вулканизации эластомеров, отверждение), получение блок- и привитых сополимеров.

Вязкость характеризует внутреннее сопротивление системы сдвигу, или внутреннее трение. Она изменяется в широких пределах: от 10 э до 10й Па с; для полимеров характерны высокие значения вязкости — от 103 до 1012 Па -с.

Для полимеров характерны два механизма диэлектрической зелаксации: дипольно сегментальный (ДС, или сс-процесс), обу-усиленный ориентационными поворотами сегментов и проявляющийся при Т = ГС и дипольно-групповой (ДГ, или [1-про-лесс), связанный с ориентацией полярных боковых групп и проявляющийся при Т<ТС. Энергия активации ДГ процесса не превышает 5—15 кДж/моль, а энергия активации ДС поляризации на порядок выше (130—590 кДж/моль). Если полимер содержит несколько полярных групп, способных ориентироваться независимо друг от друга, то на температурных зависимостях е', е" или 1^6 появляется несколько перегибов, или максимумов дипольно-групповых потерь -у, б и т д.

м- и о-карборансодержащих полимеров характерны (наряду с меньшей общей сте-

Для расплавов и растворов полимеров характерны спектры ЯМР высокого разрешения. Однако использование этих спектров затрудняется из-за большой ширины линий спектра вследствие высокой вязкости и наличия различных конфигурационных и конформационных последовательностей в цепи макромолекулы. Для уменьшения влияния этих явлений подбирают оптимальные растворители, съемку спектров проводят при повышенных температурах в разбавленных растворах.




Полимеризации присоединение Полимеризации пропилена Полимеризации различных Полимеризации существенно Полимеризации винилхлорида Полимеризации винилового Полимеризации значительно Полимеризацию прекращают Плавления кристаллов

-
Яндекс.Метрика