Главная --> Справочник терминов


Полимеров макромолекулы Остатки мономеров могут соединяться в макромолекуле друг с другом с образованием полимеров линейного, разветвленного или сетчатого (пространственного) строелия.

Следует различить ограниченное набухание полимеров линейного и сетчатого строения. Для линейных полимеров Этот процесс

Иногда наблюдается явление так называемого отрицательного набухания полимера, т. е, не увеличение, а >меньтение ivtaccbr образца во времени. Это происходит при растворении полимеров линейного или сетчатого строения а результате вымывания из них растворимых примесей.

В этих реакциях моногидроксиметилкарбамиды обладают большей реакционной способностью по сравнению с дигидроксиметилкарбамидом. Однако из моногидроксиметилкарбамида не удается получить разветви гн-ных или трехмерных полимеров с хорошими свойствами. Поликонденсация карбамида с формальдегидом при эквимолярном соотношении компонентов приводит к образованию полимеров линейного строения

Поликонденсацию проводят обычно при эквимольном соотношении фталевого ангидрида (3 моль) и глицерина (2 моль) при 150...180°С. На первой стадии образуются кислые эфиры, содержащие кислотные и гидро-ксильные группы, которые могут подвергаться дальнейшей этерификации сначала с получением полимеров линейного строения, а затем (при более высоких температурах) с превращением их в полимеры пространственного строения. Вторая стадия протекает значительно медленнее первой. Выделение воды начинается после завершения реакции примерно на 50%, когда все ангидридные группы фталевого ангидрида практически израсходованы. Дальнейший процесс представляет собой алкилирование гидро-ксильных групп спиртовыми.

Рис. II. 6. Кривые ползучести полимеров: / — линейного; 2—сетчатого.

Остатки мономеров могут соединяться в макромолекуле друг с другом с образованием полимеров линейного, разветвленного или сетчатого (пространственного) строения.

Следует различить ограниченное набухание полимеров линейного и сетчатого Строения. Для линейных полимеров Этот процесс

Полимеры могут поглощать низкомолекулярные вещества не только из жидкой фазы, по и из газовой; если ггри этом полимер набухает в данной жидкости, то он набухает и в ее парах. Скорость набухания в парах значительно меньше, по величина максимальной, или равновесной, степени набухания не изменяется. Иногда наблюдается явление так называемого отрицательного набухания полимера, т. е. не увеличение, а уменьшение массы образца во времени. Это происходит при растворении полимеров линейного или сетчатого строения а результате вымывания из них растворимых примесей.

Остатки мономеров могут соединяться в макромолекуле дрз с другом с образованием полимеров линейного, разветвленног или сетчатого (пространственного) строения.

Следует различить ограниченное набухание полимеров линейного и сетчатого строения. Для линейных полимеров этот процесс

где ij = эффективному объему одного грамм-звена. Можно было бы ожидать, что член 2,5 v является постоянным для данного гомологического ряда полимера. Штаудингер показал, что для полимеров линейного типа это не так, но что этот член пропорционален молекулярному весу полимера**. Поэтому уравнение принимает вид

Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в кау-чуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности ка-ландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25].

В высокоэластическом состоянии полимеров макромолекулы или их части вследствие интенсивного теплового движения меняют свое окружение, переходя от точки с одним локальным полем к точке с другим локальным полем. Если молекула меняет свое окружение достаточно быстро, то локальное поле усредняется и практически действует только поле Я0, в результате линия ЯМР-поглощения сужается. Таким.образом, по линии ЯМР можно судить о структуре вещества и характере его теплового движения. Чем интенсивнее молекулярное движение, тем меньше значения ширины линии

Все молекулы определенного белка идентичны и, следовательно, имеют одинаковую относительную молекулярную массу, которая в зависимости от типа белка составляет от десятков до сотен тысяч, а иногда и больше. В этом заключается отличие белков от некоторых других природных полимеров (например, целлюлозы или синтетических полимеров), макромолекулы которых имеют разную длину (хотя и получены регулярным повторением одной и той же структурной единицы), а значит, могут иметь разную относительную молекулярную массу.

Макромолекулы линейных полимеров (рис. 1,а) представляют собой длинные цепи с очень высокой степенью асимметрии (их поперечный размер в вытянутом состоянии соответствует поперечному размеру

Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации. К первому классу относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичными представителями полимеров этого класса можно назвать полиэтилен, полипропилен, поли-изобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение:

Ко второму классу относится не менее обширная группа гетероцепных полимеров, макромолекулы которых в основной цепи помимо атомов углерода содержат гетероатомы (например, кислород, азот, серу и др.). К полимерам этого класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т.д., а также большая группа эле-ментоорганических полимеров. Химическое строение некоторых представителей этого класса полимеров выглядит так:

В случае застекловывания полимеров макромолекулы лишены такой возможности вследствие их огромной длины. Только в идеальном кристалле по-

Макромолекулы полимеров состоят из многократно повторяющихся структурных единиц — элементарных звеньев.

Полиамидными волокнами называются синтетические полокна, получаемые из линейных полимеров, макромолекулы которых содержат амидные группы (—МНСО—).

Ограниченное набухание— процесс взаимодействия полимеров с низкомолекудярнымн жидкостями, не сопровождающийся растворением. Это наблюдается при невысоком термодинамическом сродстве полимера и растворителя, а также характерно для полимеров, макромолекулы которых соединены прочными поперечными связями в пространственную сетку. Редкие поперечные связи между макромолекулами на первой стадии набухания полимера не затрудняют диффузию в н^го молекул растворителя Поэтому в первый период наб>-ханис происходит с максимальной скоростью. Однако сольватация растворителя звеньями макромолекул, расположенными между узлами сетки, снижает их подвижность, приводит к }В1-личенню расстояний между ними, к растяжению и распрямлению макромолекул, уменьшению энтропии системы, появлению сильных механических напряжений и разрыву некоторых перенапряженных участков; скорость набухания при этом уменьшался.

В первой трети XX в.— хотя по-прежнему вокруг природы полимеров (макромолекулы или коллоиды?) велись ожесточенные дискуссии — ассортимент материалов для синтетических волокон пополняется другими эфирами целлюлозы, а также полиамидами, возникает уже реальная промышленность синтетических волокон и синтетических каучуков. В последнем случае решающая роль принадлежит отечественным химикам — Ипатьеву и Лебедеву, который не только впервые синтезировал полибутадиеновый каучук, но и впервые предложил" для укрепления каучука при превращении его в резину использовать в качестве наполнителя сажу. Некоторые подробности о значимости этого фундаментального физического открытия читатель найдет в третьей части.




Полимеризации существенно Полимеризации винилхлорида Полимеризации винилового Полимеризации значительно Полимеризацию прекращают Плавления кристаллов Полимерные дисперсии Полимерные производные Полимерных диэлектриках

-
Яндекс.Метрика