Главная --> Справочник терминов


Полимеров молекулярный Механизмы Физическое сос-разрушения тояние полимеров Механические Уравнения временной зависи-потери мости прочности

МЕХАНИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ И СТУДНЕЙ ПОЛИМЕРОВ

* Речь идет о температуре стеклования, коэффициенте объемного расширения и других аналогичных свойствах аморфных полимеров. Механические свойства даже в пределах аморфного состояния могут зависеть от надмолекулярной структуры более существенно.

ii.,ien_iMciv_c. однако в aruM случае такие процессы играют подчиненную роль. По этим причинам механические свойства армированных систем надо рассматривать одновременно с различных позиций, прежде всего с точки зрения механики твердых тел [6, 9], а также с учетом особенностей физико-химического поведения связующих в граничных слоях. Необходимо отметить, что, хотя механизм усиления полимеров дисперсными и волокнистыми наполнителями различен, физико-химические закономерности поведения полимеров в граничных слоях в обоих случаях одинаковы.

Механические свойства стеклопластиков, так же как наполненных дисперсными наполнителями полимеров, зависят от содержания в них волокна, хотя прочность и упругие свойства стеклянных волокон примерно на два порядка больше, чем полимерных связующих, и, казалось бы, что чем больше волокна в стеклопластике, тем выше его прочностные характеристики. Между тем существует оптимальное соотношение между содержанием армирующих волокон в материале и его прочностными и упругими' характеристиками. Подробно механические свойства армированных систем описаны в ряде монографий [2, 6—8).

МЕХАНИЧЕСКИЕ СВОЙСТВА НАПОЛНЕННЫХ КРИСТАЛЛИЧЕСКИХ ПОЛИМЕРОВ

Механические свойства наполненных кристаллических полимеров исследова-ны значительно меньше, чем аморфных. В большинстве работ, посвященных этим вопросам, приводятся конкретные данные об изменении свойств изучаемых систем без анализа физико-химической сущности явлений, определяющих вязкоупругие и деформационные характеристики кристаллических наполненных систем.

На основании изложенного в предыдущих главах можно сделать вывод о влиянии фазового состояния полимера на изменение его свойств при наполнении. В присутствий наполнителя изменяются условия кристаллизации, а следовательно, общая степень кристалличности и характер надмолекулярных образований. Эти факторы, влияющие на свойства кристаллических полимеров и в отсутствие наполнителя, определяют также механическое поведение наполненных кристаллических полимеров. Следует иметь в виду, что часто наполнитель вводят в полимер именно с целью повлиять на характер кристаллизации и структурообразования и тем самым на его механические свойства. В кристаллические полимеры наполнитель вводят в меньших количествах, чем в аморфные, и возникновения структурной сетки наполнителя там не наблюдается. Как уже отмечалось, в случае достаточно тонких прослоек полимера между частицами наполнителя процесс кристаллизации тормозится, и в пределе кристаллизация может не происходить.

Для решения проблемы создания полимеров с требуемыми физико-механическими свойствами важнейшее значение имеет установление однозначной взаимосвязи между их строением (особенностями структуры и характера молекулярной подвижности) и макроскопическим поведением в условиях действия различных силовых полей. При этом наиболее ценную информацию дает исследование динамических механических свойств полимеров в широком температурно-частотном диапазоне, ибо для большинства полимеров механические свойства являются основными.

Стало обычным рассматривать механические свойства полимерных материалов в разных температурных интервалах раздельно, так как для объяснения разных проявлений механического поведения используются различные подходы и разные математические методы. Такой обычный путь анализа будет сохраняться в настоящей книге, хотя следует подчеркнуть, что этот довольно произвольный прием изолирует отдельные аспекты механического поведения полимеров.

* Речь идет о температуре стеклования, коэффициенте объемного расширения и других аналогичных свойствах аморфных полимеров. Механические свойства даже в пределах аморфного состояния могут зависеть от надмолекулярной структуры более существенно.

Данная книга избранных трудов В. А. Каргина содержит работы в области структуры полимеров, их механических свойств и зависимости физико-механических свойств от структуры полимеров, т. е. в области структурной механики полимеров. В соответствии с этим все работы В. А. Каргина с сотрудниками, включенные в данный том, составляют три отдельных раздела: структура полимеров, механические свойства полимеров и структурная механика полимеров.

Для определения молекулярного веса полимеров используют главным образом свойства их разбавленных растворов. В некоторых случаях при исследовании плохо WO, растворимых линейных полимеров применяют их расплавы или, если возможно, вычисляют молекулярный вес по количеству концевых групп макромолекул. Все эти методы имеют какие-либо ограничения, и применение их возможно лишь в определенных пределах.

ьКриоскопиче-ский метод определения молекулярного веса можно применять для исследования полимеров, молекулярный вес которых не превышает 5000. В основу криоско-пического метода положено установление количества кинетически независимых частиц в растворе. Чтобы результаты испытаний отражали действительное количество макромолекул в растворе, концентрация исследуемого раствора должна быть такой, при которой его свойства приближались бы к свойствам идеальных растворов. Область приближения реальных растворов высокомолекулярных соединений к идеальным растворам характеризуется столь большими разбавлениями, что величины температурной депрессии невозможно установить при помощи термометра Бек-мана. Поэтому криоскопический метод применяют в редких случаях, когда требуется установить молекулярный вес наиболее

Характер изменения зависимости г\уа.—С (рис. 7) в растворах оказался одинаковым. Однако резкое структурирование в растворе желатина по сравнению с полиакриламидны-ми препаратами происходит в области больших концентраций, что вызвано, по-видимому, различиями в функциональном составе и величинах молекулярных весов полимеров (молекулярный весжелатина равен 60000, а ПАА —больше 500000).

Можно выделить два уровня структуры полимеров — молекулярный и надмолекулярный. Молекулярная структура полимера описывает его химическое строение, т. е. состав и порядок связи отдельных атомов и групп в полимерной молекуле. Однако свойства сетчатых эпоксидных полимеров зависят не только от химического строения молекул полимера, но и от пространственного расположения образующих полимер молекулярных цепей. В настоящее время можно считать установленным, что все полимеры от аморфных до кристаллических обладают той или иной степенью упорядоченности, зависящей как от химической природы полимера, так и от способов его получения и переработки [1], причем эта упорядоченность обусловливается не только наличием кристаллической решетки даже в кристаллических полимерах, а связана именно с характерной чертой полимеров— наличием длинных молекулярных цепей.

Можно выделить два уровня структуры полимеров — молекулярный и надмолекулярный. Молекулярная структура полимера описывает его химическое строение, т. е. состав и порядок связи отдельных атомов и групп в полимерной молекуле. Однако свойства сетчатых эпоксидных полимеров зависят не только от химического строения молекул полимера, но и от пространственного расположения образующих полимер молекулярных цепей. В настоящее время можно считать установленным, что все полимеры от аморфных до кристаллических обладают той или иной степенью упорядоченности, зависящей как от химической природы полимера, так и от способов его получения и переработки [1], причем эта упорядоченность обусловливается не только наличием кристаллической решетки даже в кристаллических полимерах, а связана именно с характерной чертой полимеров— наличием длинных молекулярных цепей.

Растворимость при уменьшении молекулярного веса полистирола с 550-103 до 9,8-103 меняется незначительно. При дальнейшем падении молекулярного веса растворимость резко возрастает. Экстраполяция приведенных данных показывает, что для достижения 100%-ной растворимости молекулярный вес полистирола не должен превышать 500. Аналогичные результаты получены при изучении растворимости фенольных смол в вулканизатах различных каучуков. При величине параметра р ~ 2 кал/см3 растворимость смолы в каучуке не превышает 10—12%. При величине р -^ 0,3 кал/см8 растворимость смолы в каучуке составляет примерно 30 о/о1 при молекулярном весе смолы 1600 и превышает 70% при молекулярном весе 700. Вследствие гетерогенности подавляющего большинства смесей полимеров их свойства в зна-чительной~сгепени зависят от характера взаимодействия на границе раздела фаз. С. С. Воюцким с сотрудниками было проведено систематическое исследование взаимодиффузии полимеров в зоне контакта 12~14. Молекулы термодинамически совместимых полимеров диффундируют до полного растворения и образования однофазного термодинамически устойчивого раствора. При отсутствии термодинамической совместимости происходит локальная диффузия, глубина которой ва многом зависит от соотношения 8 смешиваемых полимеров. Локальная диффузия молекул полимера из одной фазы в другую существенно снижает поверхностное натяжение в зоне контакта п. При значительном различии 6 компонентов диффузия в зоне контакта" определяется перемещением сегментов. Для большинства полимеров молекулярный вес кинети-'ческого сегмента лежит в интервале 1000—2000. В результате сегментальной диффузии образуется переходный слой, толщина которого достигает нескольких сотен ангстрем12.

Растворимость при уменьшении молекулярного веса полистирола с 550-103 до 9,8-103 меняется незначительно. При дальнейшем падении молекулярного веса растворимость резко возрастает. Экстраполяция приведенных данных показывает, что для достижения 100%-ной растворимости молекулярный вес полистирола не должен превышать 500. Аналогичные результаты получены при изучении растворимости фенольных смол в вулканизатах различных каучуков. При величине параметра р ~ 2 кал/см3 растворимость смолы в каучуке не превышает 10—12%. При величине р -^ 0,3 кал/см8 растворимость смолы в каучуке составляет примерно 30 Уо1 при молекулярном весе смолы 1600 и превышает 70% при молекулярном весе 700. Вследствие гетерогенности подавляющего большинства смесей полимеров их свойства в зна-чительной~степёйи зависят от характера взаимодействия на границе раздела фаз. С. С. Воюцким с сотрудниками было проведено систематическое исследование взаимодиффузии полимеров в зоне контакта 12~14. Молекулы термодинамически совместимых полимеров диффундируют до полного растворения и образования однофазного термодинамически устойчивого раствора. При отсутствии термодинамической совместимости происходит локальная диффузия, глубина которой ва многом зависит от соотношения 8 смешиваемых полимеров. Локальная диффузия молекул полимера из одной фазы в другую существенно снижает поверхностное натяжение в зоне контакта п. При значительном различии б компонентов диффузия в зоне контакта" определяется перемещением сегментов. Для большинства полимеров молекулярный вес кинети-'ческого сегмента лежит в интервале 1000—2000. В результате сегментальной диффузии образуется переходный слой, толщина которого достигает нескольких сотен ангстрем12.

Если полимеризация проводится на малую глубину, то образуются почти исключительно линейные полимеры. Для линейных полимеров молекулярный вес тр связан с длиной полимерной цепи Р* соотношением

Реакция передачи цепи через молекулы полимера приводит к образованию полимерного свободного радикала, содержащего свободную валентность на одном из атомов цепи. Присоединение молекул мономера к этому радикалу приводит к образованию разветвленных полимеров, молекулярный вес которых больше, чем это следует из уравнения (22) главы I. Скорость реакции передачи цепи через молекулы полимера Fnep, равная скорости образования боковых цепей у полимерной молекулы, очевидно, определяется уравнением

Для отверждения полисульфидных полимеров, содержащих концевые меркаптогруппы, успешно используются различные окислители; этот метод особенно пригоден для отверждения продуктов среднего молекулярного веса. При отверждении этим методом сравнительно низкомолекулярных полимеров (молекулярный вес 500—1000) возникают значительные трудности, связанные с необходимостью больших количеств окислителя. Особенностью процессов отверждения при действии окислителей является выделение тепла, обусловленное окислением меркаптогрупп в дисульфид-ные; в ряде случаев это затрудняет проведение процесса. Сильные окислители могут расщеплять дисульфидные связи с образованием сравнительно нестабильных тиолсульфонатов или даже сульфокислот. Однако при правильном выборе отверждающего агента вполне возможно контролировать процесс отверждения разнообразных жидких полисульфидных полимеров и как при комнатной, так и при повышенной температуре получать требуемые продукты. Поскольку процессы окисления, тем более окисления макромолекул, подчиняются сложным законам органической химии, то поликонденсация при окислении протекает далеко не количественно. В соответствии с этим вполне закономерно следующее наблюдение: чем ниже молекулярный вес исходного полимера, тем хуже физические свойства продукта его отверждения. При отверждении путем окисления могут протекать также и различные побочные реакции, приводящие к разрыву молекул и соответственно к понижению показателей прочности на разрыв, удлинения и устойчивости к истиранию.




Полимеризации тетрафторэтилена Промывают несколько Полимеризации вследствие Полимеризацию бутадиена Полимеризацию протекающую Полимерный компонент Полимерные кристаллы Полимерные углеводороды Полимерных дисперсий

-
Яндекс.Метрика