Главная --> Справочник терминов


Полимеров полученных Искусственные латексы — это водные коллоидные дисперсии каучукоподобных полимеров, полученные диспергированием твердых каучуков или их растворов.

['не. 9. Типичные кривые «деформация--температура» линейных полимеров, полученные различными методами:

Таким образом, изотермическая кристаллизация полимеров при температурах значительно ниже температуры плавления приводит к образованию неравновесных (метастабильных) кристаллов, средний размер которых вдоль оси макромолекулы зависит от температуры кристаллизации, возрастая с ее повышением. Монокристаллы полимеров, полученные как из растворов, так и из расплавов, неоднородны по строению. Участки макромолекул, находящиеся внутри кристаллов, образуют кристаллическую ре-

скорость релаксационных процессов. Внешне это проявляется в уменьшении эффективной вязкости. Основные характеристики механических свойств полимеров, полученные при использовании релаксационного спектра, дают возможность оценить не только их вязкостные свойства, но и высокоэластическую деформацию. Существующие представления о реологических свойствах полимеров позволяют предсказать их поведение при любых условиях течения, при любом методе переработки.

Ниже приведены данные о влиянии пластификаторов на температуры стеклования полимеров, полученные дилатометрическим методом (рис^ 194)', на основании измерений деформации (рис, 195) й и модуля упругости (рис. 196)* ,

В табл. 11.1 представлены некоторые из полимеров, полученные помощью процесса поликонденсации. Стремление к созданию поли-1еров с лучшими характеристиками привело к разработке методов мо-(ификации свойств полимеров. Одним из таких методов является провес сополимеризации. Он осуществляется при полимеризации смеси юномеров, каждый из которых чувствителен к действующему меха-[изму полимеризации. Степень включения в полимер каждого мономера . этих условиях является функцией их концентрации и относительной 'еакционной способности но отношению к реакционным центрам поли-1ерной цепи. Некоторые пары мономеров сополимеризуются с образо-(анием чередующейся! структуры;

В табл. 11.1 представлены некоторые из полимеров, полученные

Прочность и модуль волокон из простых и смешанных пара-ароматических полиамидов без особых ухищрений сразу получаются соответственно «2—5 и « 100—150 ГПа. Однако, так же, как и суперволокна из малополярных полимеров, полученные с помощью (правильно проведенной!) ориентационной вытяжки или ориентационной кристаллизации, они обладают одним существенным дефектом: их прочность в поперечном направлении ничтожна по сравнению с продольной. Волокна и пленки претерпевают сильную фибриллизацию, т. е. самопроизвольно или при деформации (особенно кручении) распадаются на чрезвычайно тонкие фибриллы, которые при дальнейшей деформации образуют еще более тонкие линейные монокристаллы типа «усов», столь хрупкие, что манипулирование ими практически невозможно. Они обнаружены уже достаточно давно, но детально до сих пор не исследованы. По-видимому, именно они образуют упоминавшийся каркас в ориентационно закристаллизованных волокнах.

В табл. 11.1 представлены некоторые из полимеров, полученные с помощью процесса поликонденсации. Стремление к созданию полимеров с лучшими характеристиками привело к разработке методов модификации свойств полимеров. Одним из таких методов является процесс сополимеризации. Он осуществляется при полимеризации смеси мономеров, каждый из которых чувствителен к действующему механизму полимеризации. Степень включения в полимер каждого мономера в этих условиях является функцией их концентрации и относительной реакционной способности по отношению к реакционным центрам полимерной цепи. Некоторые пары мономеров сополимеризуются с образованием чередующейся структуры;

Ниже приведены данные о влиянии пластификаторов на температуры стеклования полимеров, полученные дилатометрическим методом (рис. 194)', на основакии измерений деформации (рис. 195) Е и модуля упругости (рис. 196)* .

Растворы разной концентрации и вязкости получали, регулируя в процессе синтеза количество введенного восстановителя или растворяя смолы в воде. Процесс растворения носил обратимый характер — при упарирова-нии можно было вновь получить смолоподобный продукт. Наиболее высокой вязкостью при одинаковой концентрации смолы обладают растворы полимеров, полученные при использовании в качестве активаторов полимеризации алюминия, хрома и серы (рис. 6), меньшей вязкостью — при использовании молибдена, вольфрама, меди и цинка (d-металлы). Промежуточное положение по вязкости занимают магний, бор и углеродхромовые смолы. Таким образом, более интенсивно инициируют полимеризацию s- и р-элементы; в эту же группу входит хром.

При исследовании ММР низкомолекулярных уретановых полимеров (преполимеров) было показано, что для полиуретанов с концевыми NCO-группами, полученных из олигомерных сложных полиэфиров и гексаметилендиизоцианата, Mw/Mn равно 2. При применении же 2,4-толуилендиизоцианата коэффициент полидисперсности полиуретанов ниже 2 и соответствует отношению Mw/Mn исходных полиэфиров. Установленные закономерности связаны с тем, что в гексаметилендиизоцианате обе функциональные группы имеют равную реакционную способность, а в толуилен* диизоцианате, как указывалось выше, различную.

Рассмотренные закономерности относятся к линейной поли' конденсации. ММР разветвленных полимеров значительно отли* чается от ММР полимеров, полученных в процессе линейной поликонденсации [21, с. 211].

k снижению функциональности катализатора и тем самым к снижению функциональности полимеров, полученных при полимеризации, инициированной дилитий-о-карбораном.

Неравновесная полимеризация циклотрисилоксанов на живых полимерных цепях полистирола, поли-а-метилстирола и других полимеров, полученных анионной -полимеризацией непредельных соединений позволяет синтезировать блоксополимеры типа ABA, в которых блоки А силоксановые, а блок В углеводородный. Структура ВАВ с силоксановым блоком посередине невозможна, так как силоксандиоляты не инициируют полимеризацию непредельных соединений [17].

Из исследованных каучуков лучшими эластическими свойствами в широком интервале температур обладает полимер, полученный из политетрагидрофурана молекулярной массы 1000. Для этого состава изучалось влияние полидисперсности полимердиола на свойства каучука и его вулканизатов. Естественно, что более высокий уровень эластичности имеют полимеры, содержащие значительное количество высокомолекулярных фракций. В области положительных температур- эластичность по отскоку является функцией полидисперсности полиэфира (рис. 2). Падение эластичности полимеров с увеличением коэффициента полидисперсности объясняется увеличивающейся нерегулярностью в распределении уретановых групп по цепи. Для полимеров, полученных на основе механической смеси каучуков, на температурной зависимости эластичности по отскоку появляются характерные для блокполимеров две области переходов. Нерегулярность физических узлов и химических поперечных связей при значениях

87. При рассмотрении строения макромолекул различных полимеров, полученных на основе алкенов, были сделаны сле-

Среднюю степень поликонденсации (Р) линейных полимеров, полученных из эквимолекулярных количеств компонентов, можно выразить так:

Полимеры акриловой кислоты, полиакрилаты [—СНз— —СН(СООН)—]„ имеют меньшее практическое значение. Однако на основе мягких акриловых полимеров, полученных методом эмульсионной полимеризации, можно изготовлять гидроизоляционные пленки. В результате совместимости этих полимеров с нитро-и ацетилцеллюлозой их вводят в состав целлюлозных лаков для увеличения адгезии, водо- и атмосферостойкости.

Значения К образцов аморфных полимеров, полученных при относительно высоких давлениях, меньше, чем у образцов, полученных при меньших давлениях. Причина этого состоит в следующем. При относительно небольших внешних давлениях по мере увеличения давления сегментальная подвижность в полимерах хотя и уменьшается, однако сохраняется возможность перегруппировки звеньев макромолекул. В случае более высоких давлений свободный объем уменьшается, подвижность полимерных цепей затрудняется и X увеличивается. Поэтому температура стеклования полимера возрастает и за время эксперимента не успевает установиться равновесный свободный объем образца. Это и обусловливает разницу значений К для образцов, полученных при высоких и низких давлениях, если полимер находится в высокоэластическом состоянии. Наложение еще более высоких давлений уже не будет приводить к дальнейшему уменьшению свободного объема, ибо при этом полимер будет находиться в стеклообразном состоянии и не могут проявляться условия, обеспечивающие заметное изменение его свободного объема. Таким образом, повышение давления способствует уменьшению свободного объема полимера, затрудняет подвижность сегментов макромолекул и увеличивает коэффициент А,.

Представления о структуре монокристаллов полимеров, полученных из разбавленных растворов, справедливы и для пластин, получающихся при кристаллизации из расплавов. Некоторое различие наблюдается лишь в их размерах. Это связано с тем, что температуры, при которых кристаллизация полимеров из разбавленных растворов происходит с заметной скоростью, обычно значительно ниже температуры плавления. Температуры кристаллизации из расплава могут быть близки к температуре плавления полимера, а это способствует образованию более толстых пластин. Обычно при кристаллизации из расплава вырастают целые блоки пластин — многослойные кристаллы. Как и монокристаллы, выра-

Особо следует остановиться на влиянии температуры полимеризации на структуру и свойства полимеров, полученных при сво-боднорадикальной полимеризации. Снижение температуры положительно сказывается не только на регулярности чередования звеньев в цепи, но и на величине молекулярной массы (она растет вследствие уменьшения вероятности обрыва реакционной цепи при уменьшении подвижности макрорадикалов). Снижается или полностью отсутствует разветвленность макромолекул (при низких температурах вероятность отрыва водорода от макромолекулы свободным радикалом меньше, чем вероятность его реакции с двойными связями молекул мономера вследствие меньшей энергии активации последней). Наконец, при более низких температурах сужается молекулярно-массовое распределение полимера, так как подвижность макрорадикалов уменьшается и снижается доля их столкновений при малых степенях полимеризации, что уменьшает долю низкомолекулярной фракции.




Полимерных компонентов Полимерных кристаллов Полимерных образований Полимерных растворов Полимерных углеводородов Перегонке разлагается Полимерным радикалом Промывают разбавленной Полимерного состояния

-
Яндекс.Метрика