Главная --> Справочник терминов


Полимеров следовательно Задача. На основе разветвленных полимеров получить волокна с удовлетворительным комплексом механических свойств не удается. Однако добавка разветвленных полимеров, синтезированных прививкой одного полимера на другой, уменьшает структурную неоднородность изделий из смесей двух волокно-образующих полимеров, природа которых идентична основной и привитым цепям. Волокна, получаемые из смесей таких несовместимых полимеров в присутствии привитых сополимеров, обладают высокими механическими показателями. Примером могут служить волокна на основе смесей вторичного аце-

В некоторых случаях значение [г\] может быть оценено по результатам определения цул при одной концентрации. Этот способ является применимым и достаточно точным только для тех систем полимер - растворитель, для которых график гЬд/С от С - прямая, а угол ее наклона - постоянный. Этот способ оценки [r)j может быть использован для определения молекулярных характеристик волокнообразующих полимеров, синтезированных в одинаковых условиях. Для таких расчетов используют формулу Соломона-Сьюта:

Из полимеров, синтезированных на основе фурилового спирта (фуриловые полимеры), готовят антикоррозионные лаки, мастики и клеи. Они употребляются как антикоррозионные покрытия по металлу, бетону, кирпичу и дереву, а также используются и для фу-теровочных работ в виде замазки.

Молекулы полимеров, синтезированных из бифункциональных соединений, имеют линейное строение. Если же функциональность исходного соединения больше двух, то получаются разветвленные или сетчатые полимеры. В некоторых случаях происходит образование линейных полимеров с одновременной циклизацией элементарных звеньев (см. например, с. 249, 326).

Так как при анионной полимеризации самопроизвольного обрыва цепи не происходит, то можно получить полимеры, монодисперсные по молекулярной массе. Для этого помимо полного отсутствия посторонних примесей необходимо, чтобы скорость образования активных центров была очень высока и условия полимеризации были одинаковыми в любой точке реакционной системы (хорошее перемешивание). Несмотря на значительные практические трудности при соблюдении указанных условий полимеризации, таким методом были получены полимеры, которые по однородности по молекулярной массе превосходили узкие фракции, выделенные при фракционировании соответствующих полимеров, синтезированных другими методами.

В 1953 г. проблемами гетерогенного катализа заинтересовалась группа сотрудников Миланского политехнического института во главе с профессором Натта [5]. Первоначально они применяли процесс Циглера, а позже стали вводить в полимеризационную систему предварительно приготовленное твердое комплексное соединение, полученное в результате реакции четыреххлористого титана с триэтилалюминием. Изучение образующегося при этом осадка привело Натта с сотрудниками к открытию комплексных катализаторов на основе низших хлоридов титана и органических производных алюминия. Они установили, что при полимеризации пропилена, бутилена, стирола и других непредельных углеводородов на комплексных катализаторах образуются полимеры с высоким выходом и большим молекулярным весом. Эти полимеры коренным образом отличаются от обычных полимеров, синтезированных в гомогенной среде (способны кристаллизоваться, имеют гораздо более высокие и четкие температуры плавления, большую плотность и хуже растворяются в органических растворителях). Таким образом, можно провести аналогию между этими полимерами и двумя типами поливинилизобутилового эфира, описанными Шильд-кнехтом. Натта с сотрудниками с помощью рентгеноструктурного анализа и инфракрасной спектроскопии установили типы пространственного расположения заместителей у третичных углеродных атомов и строгую линейность полимерных цепей.

Экстрация на колонках Метиленхлорид н- Гептан Два максимума (бистан, смесь полимеров, синтезированных разными методами) Два максимума, первый — слабее (макро-лон)

Если макромолекулы содержат доступные анализу концевые группы, то кроме физико-химических методов определения молекулярной массы можно применять и химические методы. В полимеры, которые получают радикальной полимеризацией, такие концевые группы могут быть введены путем подбора соответствующего инициатора (см. гл. 3). При этом существенно, по какому механизму происходит обрыв цепи, так как от этого зависит число концевых групп на одну макромолекулу (при рекомбинации — две концевых группы, при диспр0(порци0'ниро(вании — одна группа). Следует учитывать также возможность передачи цепи на мономер, так как при этом число концевых групп на макромолекулу уменьшается, что приводит к завышенному значению молекулярной массы. Для определения числа концевых групп применяют специфические и очень точные методы анализа, так как эти группы составляют лишь малую долю макромолекулы («иже 0,5% по молекулярной массе). В качестве аналитических методов используют определение галогенов (например, при применении перекиси/г-дибромбен-зоила, определение 14С [74] при применении меченых перекисных соединений [75] или азосоединений [76]) или спектроскопические методы (-при применении азосоединений с характеристическими абсорбционными полосами [77]). Молекулярную массу полимеров, синтезированных лоликонденсацией или полиприсоединением, также можно оценить путем определения концевых групп. Для полиэфиров можно очень точно количественно определить число гидроксильных или карбоксильных концевых групп с помощью титрования или колориметрически [78]. Гидроксильные концевые группы (например, в полиоксиметиленах) можно определить также ацетилированием или метилированием [79]. Среднечисловую молекулярную массу находят по уравнению

При координационно-ионной полимеризации для образующихся макромолекул характерно не просто химически регулярное соединение мономерных звеньев по типу Г — X (что вообще присуще ионной полимеризации), но и строгое чередование в пространстве заместителей при атомах углерода основной цепи полимера. Стереоспецифичность макромолекул полимеров, синтезированных при координационно-ионной полимеризации обеспечивается природой комплексного катализатора. Соединения алюминия и титана аналогичной структуры, но взятые в отдельности, не являются стереоспе'цифическими катализаторами.

В отличие от полимеров, синтезированных в эмульсии, полимеры, полученные в суспензии, свободны от стабилизаторов, благодаря чему они имеют высокие диэлектрические свойства, а изделия из них высокопрозрачны. Полимеризацию в суспензии применяют для синтеза поливинилхлорида, полистирола, полиметилмет-акрилата, поливинилацетата.

Экстрация на колонках Метиленхлорид к- Гептан Два максимума (бистан, смесь полимеров, синтезированных разными методами) Два максимума, первый — слабее (макро-лон)

В большинстве случаев процессу формования предшествуют транспортировка и деформация размягченных или расплавленных полимеров. Следовательно, подготовка полимера к формованию обычно включает стадию разогрева или плавления. В любом случае можно классифицировать этот процесс как «элементарную стадию плавления». В этой главе обсуждается механизм плавления, демонстрируются некоторые общие математические методы, используемые для его описания, и показывается, как механизм плавления и физические свойства полимеров определяют геометрический фронт плавления.

В процессе теплового движения макромолекулы могут находиться в различных конформациях. Переход одних конформаций к другим происходит путем внутреннего вращения звеньев вокруг единичных связей. В реальной молекуле вполне свободного вращения нет, так как в самих цепях имеются боковые привески, при сближении которых силы притяжения переходят в силы отталкивания. Кроме того, торможение свободного вращения происходит и при взаимодействии звена цепи с окружающими его звеньями других цепей полимеров. Следовательно, при вутреннем вращении происходит торможение из-за наличия потенциальных барьеров, что приводит к увеличению жесткости цепи по сравнению с цепью, у которой имелось бы свободнее вращение (высокие температуры).

ионов добавленного низкомолекулярного электролита, и степень развернутости макромолекул полимеров (следовательно и скорость течения растворов через капилляр) остается практически постоянной С возрастанием концентрации полимера количество ионизированных групп в нем, по-видимому, становится одного порядка с числом ионов низкомолекулярного электролита, в этом случае вязкость очень чувствительна к малейшим изменениям концентрации как полиэлектролита, так и электролита.

Определение величины ДЯ для полимеров и сравнение их со значениями ДЯ для ыиэкомолекулярных соединений сходного строения сыграло важную роль для понимания механизма течения полимеров. Оказалось, что увеличение молекулярного веса низко-молекулярных соединений приводит только к ограниченному росту ДЯ, предельные значения которых достигаются при молекулярных весах незначительных по сравнению с молекулярными весами полимеров. Следовательно, температурная зависимость вязкости полимера определяется размерами не макромолекул, а их небольших участков —сегментов, которые и являются кинетически самостоятельными структурными элементами полимера. Под действием теплового движения происходят перемещения (перескоки) именно • сегментов из одного положения в другое. Обычно сегменты включают не больше 30—40 атомов основной цепи макромолекул. Так как механизм течения полимеров сегментальный, в размерности величины ДЯ теплота активации относится к молю сегментов.

Отсутствие влияния мость lg Стр — ?, очевидно, связано (при максимальном значении 6) с природой аморфного полимера полистирола — высокоэластические деформации жесткоцепных полимеров (следовательно, и ориентация) значительно ниже, чем у вулканизатов.

Искусственные зародышеобразователи даже в количестве 0,2% (масс.) изменяют реологические свойства расплавов полимеров, что связывается с их структурообразующим действием уже в расплаве. Подбором различных по природе веществ в качестве искусственных зародышеобразователей, варьированием их концентрации и размера можно создать высоковязкие устойчивые к температурным воздействиям расплавы полимеров. Следовательно, в случае кристаллизующихся полимеров вводимые частицы наполнителя также являются центрами структурообразования, как и в случае аморфных полимеров, оказывая существенное влияние на тип возникающих надмолекулярных структур.

Способность большинства волокон поглощать влагу основана на взаимодействии молекул воды с гидрофильными группами волокнообразующих полимеров. Следовательно, для того чтобы придать таким гидрофильным волокнам способность отталкивать воду, необходимо блокировать их активные группировки. Это достигается с помощью химической реакции, приводящей к превращению гидрофильных группировок в гидрофобные, или путем экранирования активных группировок гидрофобными пленками от контакта с молекулами воды. С этой целью используют: эмульсии восков, содержащие соли алюминия или циркония; кремнийорганические соединения (силиконы); органические комплексы хрома или алюминия; пиридинсодержащие соединения, например хлорид ациламидометилпиридиния; фтор-содержащие препараты; гидроксиметилпроизводные различных соединений, содержащих длинные алкильные цепочки.

Образовавшийся при распаде радикал деполимеризуется. Таким образом, при каждом акте передачи из одной стабильной молекулы и радикала образуются две стабильные молекулы и радикал. Поэтому можно ожидать, что молекулярный вес будет быстро уменьшаться даже в начальной стадии деполимеризации низкомолекулярных полимеров. Следовательно, предположение о протекании реакции передачи цепи противоречит имеющимся данным об изменении молекулярного веса при деполимеризации низкомолекулярных полимеров.

На основании полученных экспериментальных данных сделано заключение, что понятие температуры стеклования при оценке свойств кристаллических полимеров играет такую же важную роль, как и для аморфных полимеров. Следовательно, при определении интервала температур эксплуатации кристаллических полимеров необходимо устанавливать две характеристические величины: температуру стеклования и температуру плавления. За пределами этих температур кристаллический полимер в значительной мере утрачивает свои специфические механические свойства.




Полимерным материалам Полимерной молекулой Полимерного материала Полимерном материале Полимерно мономерной Промывных жидкостей Полимеров достаточно Полимеров характерно Полимеров используется

-
Яндекс.Метрика