Главная --> Справочник терминов


Полимеров существует При вычислении М на основании оценки коллигативных свойств разбавленных растворов полимеров существенно влияют низкомолекулярные и олигомерные фракции. При оценке гидродинамических характеристик определяющую роль играют высокомолекулярные фракции.

Температурный коэффициент вязкости (кажущаяся энергия активации вязкого течения) расплавов волокнообразующих полимеров существенно зависит от степени аномалии вязкостных свойств: с уменьшением доли эластической деформации в процессе сдвигового течения снижаются значения АЕр- Так, для расплавов ПКА в области температур 543-553 К величина А.ЕР = 63-^64 кДж/моль, а в диапазоне 553-573 К она возрастает до 120-125 кДж/моль, т.е. почти вдвое. С увеличением молекулярной массы полимера значения \Ер существенно изменяются (рис. 4.16, а).

4. С ужесточением цепей постепенно утрачивается способность к большим обратимым деформациям и сглаживаются границы между релаксационными состояниями. Хотя сами по себе жестко-цепные полимеры представляют большой теоретический и практический интерес (очень коротко они рассмотрены в § 2 гл. I), детальный их анализ увел бы нас в сторону. В равной мере, кристаллизация гибкоцепных полимеров, существенно влияя на их

Характер изменения тешюфизических свойств полимеров существенно завис-ит от наличия у них пустот молекулярных размеров (свободного объема). В частности, переход полимеров в стеклообразное состояние происходит лишь при достижении определенного минимального свободного объема. С другой стороны, потерю подвижности участков макромолекул при охлаждении полимера можно связать с возникновением достаточно большого числа межмолекулярных связей. Выше области размягчения, где структуру полимера можно считать равновесной, изменение объема у всех образцов происходит по единой равновесной кривой. Таким образом, при нагревании полимера характер изменения

Основные закономерности протекания ступенчатых реакций синтеза полимеров существенно отличаются от закономерностей цепных реакций. Два важных фактора определяют размер и структуру образующихся макромолекул полимера: стехиометрия (если число компонентов больше одного) и степень завершенности реакции по расходу функциональных групп реагирующих компонентов.

Как видим, ступенчатые процессы синтеза полимеров существенно отличаются от цепных. Как поликонденсация, так и ступенчатая полимеризация протекает по реакциям концевых функциональных групп молекул мономеров или олигомеров. Растущие цепи являются устойчивыми молекулами на каждом этапе их формирования. В зависимости от числа функциональных групп в исходных молекулах (их должно быть не менее двух) образуются линейные или разветвленные и сетчатые структуры конечных продуктов реакции. Большое значение имеет равновесность и обратимость реакций, что определяет время образования полимера, его молекулярную массу и другие характеристики. Существует не-

Макромолекулярная природа полимеров существенно изменяет протекание в них химических реакций по сравнению с низкомолекулярными аналогами. Например, при взаимодействии с серой или кислородом низкомолекулярных олефинов, моделирующих строение элементарных звеньев гюлидиенов, образуются соответствующие низкомолекулярные сульфиды, альдегиды, кетоны и другие соединения. У полидиенов эти реакции, аналогичные по механизму, приводят к образованию сетчатых структур (серная вулканизация) или продуктов распада макромолекул на более мелкие образования (окислительная деструкция). При этом существенно изменяются молекулярная масса и молекулярно-массовое распределение исходных полимеров и их физико-механические свойства.

Использование полимеров существенно облегчило и украсило жизнь современного человека, но принесло с собой и некоторые отрицательные явления, как, например, выделение в атмосферу пластификаторов, используемых особенно при обработке поливинилхлорида (речь идет главным образом об эфирах фталевой кислоты и полихлорированных бифенилах). Еще одна проблема — огромное количество использованных предметов из синтетических и макромолекулярных веществ. Эту экологическую проблему нельзя недооценивать, и необходимо искать способ ее решения, поэтому в последние годы уделяется внимание получению «биодеградирующих» полимеров, которые могли бы самопроизвольно распадаться по истечении определенного времени. Другое направление исследований заключается в решении проблемы рециклизации полимерных материалов.

Еще недавно стереохимия была одной из самых отвлеченных теоретических областей. Ныне она приобрела и большое практическое значение. Было установлено, что свойства полимеров существенно зависят от их пространственного строения. Это относится как к синтетическим полимерам (полистирол, полипропилен, синтетический бутадиеновый и изопре-новый каучуки), так и к природным высокомолекулярным соединениям — полисахаридам, белкам, нуклеиновым кислотам. Известно также, что пространственное строение оказывает большое влияние на физиологические свойства веществ. Сказанное определяет значение стереохимии для химии и технологии полимерных материалов, для биохимии и молекулярной биологии, для фармакологии и медицины.

том, что размеры микропор существенно зависят от метода их оценки и, естественно, что трактовка их природы и связи характеристик микропористой структуры со свойствами полимеров существенно зависит от метода их определения.

Остальные особенности, присущие каждой из диаграмм, хорошо видны на соответствующих рисунках. Имея эти диаграммы, можно прогнозировать возможность получения полимеров, которые обладали бы необходимой совместимостью одного из нескольких свойств. Например, если нужно получить полимеры с параметром растворимости 5 = 10 (кал/см3)1'2 и с Tg ~ 300 °С, то это сделать легко, поскольку точка, соответствующая этим координатам, попадает в наиболее плотную часть диаграммы рис. 107,6. Если же требуется получить полимер, у которого при том же значении параметра растворимости температура стеклования Tg была бы ~ 500 °С, то это сделать труднее, а при Tg = 600 °С нереально, поскольку точка, соответствующая этим координатам, выходит за границы области совместимости. Такой анализ легко может быть проделан для любой из представленных в работе [23] диаграмм, а также из их совокупности, что позволяет прогнозировать возможность получения полимеров с комплексом заданных свойств. Естественно, что если такие диаграммы построить с помощью ЭВМ-программы, согласно которой полимер "конструируется" из мельчайших "заготовок", области совместимости полимеров существенно пополнятся точками, отображающими свойства огромного числа полимеров.

Полимер обычно поставляется на переработку в виде сыпучего материала, состоящего из твердых частиц. Формование полимера может производиться только после того, как он пройдет ряд подготовительных операций. Характер этих операций в значительной мере определяет конструкцию, размеры, сложность и стоимость перерабатывающего оборудования. Одна или несколько таких операций применяются в процессах, реализуемых в любых существующих машинах для переработки полимеров. Поэтому они будут именоваться элементарными стадиями переработки полимеров. Существует пять четко определяемых элементарных стадий:

Экспериментально установлено, что теплоемкость при постоянном давлении твердых аморфных полимеров плавно растет с ростом температуры, скачкообразно увеличивается вблизи Те (включаются сегментальные движения) и возрастает, как правило, медленно в области расплава (см. рис. 5.12). У кристаллизующихся полимеров в области Tg скачок теплоемкости отсутствует, так как доля аморфной части обычно низка. Значение Ср резко возрастает в области плавления. Теоретически в этой области Ср равно бесконечности. На практике, поскольку у полимеров существует не точка, а температурный интервал плавления, Ср проходит через острый максимум, а затем снижается до значения меньшего, чем в области расплава. Как отмечалось ранее, Ср в расплаве медленно растет с повышением температуры (рис. 5.14). Площадь под каждой из кривых рис. 5.14 вблизи Тт равна доле кристаллической части в объеме полимера и теплоте плавления К. Обе эти величины зависят от предыстории течения и термической предыстории расплава, что уже обсуждалось в гл. 3. Значения Я для различных полимеров приведены ниже:

Термическая деструкция протекает при нагревании полимеров и в значительной степени зависит от их химического строения. Этот процесс идет по радикальному механизму и сопровождается разрывом химических связей и снижением молекулярной массы полимера. Термическая деструкция ускоряется в присутствии соединений, легко распадающихся на свободные радикалы. Однако эта деструкция может идти и по ионному (ионно-радикальному) механизму. При повышенной температуре скорость деструкции возрастает. Для различных полимеров существует свой порог термической устойчивости. Большинство из них разрушается уже при 200— 300°С, но имеются и термостойкие полимеры, как, например, политетрафторэтилен, который выдерживает нагревание свыше 400°С.

подтверждающий правильность выводов теории. По-видимому, для ориентированных полимеров существует некоторый предел, ниже которого в отсутствие агрессивных сред разрушения не происходит.

Анализ экспериментальных данных изучения износостойкости полимеров, находящихся в высокоэластическом (резины) и стеклообразном (пластмассы) состояниях, свидетельствует о том, что-износ — явление сложное, отражающее комплекс процессов, протекающих как в граничных слоях полимера, так и на поверхности трения. Между износом и внешним трением полимеров существует прямая связь. Чаще всего износ полимерных материалов обусловлен их усталостным разрушением в результате многократной деформации полимера в пятнах фактического контакта. Усталостный износ более характерен для полимеров, находящихся в высокоэластическом состоянии. Другой вид износа связан с процессом резания системой, имеющей острые выступы поверхности полимера. Этот так называемый абразивный износ более характерен для твердых полимерных материалов (различных пластмасс) . Если усталостный износ можно рассматривать как многоактный процесс, то абразивный износ является процессом одноактным. При трении полимеров по гладким поверхностям обычно имеет место усталостный износ, а при трении по шероховатым поверхностям — абразивный износ.

Между характеристической вязкостью и средневязкостным молекулярным весом разветвленного (МпВ) и линейного (Муь) полимеров существует следующая зависимость:

В области исследования износа и фрикционных свойств полимеров существует большое количество приборов и установок. Испытания твердых полимеров и пластмасс, а также некоторых жестких эластомеров обычно проводят на приборах, предназначенных для твердых (металлических) тел.

Между характеристической вязкостью и средневязкостным молекулярным весом разветвленного (Mve) и линейного (MvL) полимеров существует следующая зависимость:

В современной технологии переработки полимеров существует тенденция к расширению использования разнообразных наполнителей в композиционных материалах на основе ПВХ. Применение наполнителей позволяет получать материалы с более широким комплексом свойств в сочетании с низкой стоимостью и экономией полимерного сырья [47, 61, 74, 83]. В перспективе прогнозируется опережающий рост производства наполненных ПВХ материалов для электротехнической промышленности, строительных конструкций, машиностроения, транспорта, производства товаров для быта, тары и упаковки.

В отношении структуры аморфных полимеров существует две точки зрения. Одна из них, представленная работами Флори, Бенуа, Кирсте, Фишера и других, основана на том, что в аморфных полимерах, независимо от их физического состояния, отсутствует всякая упорядоченность расположения макромолекул (если материал не подвергался предварительной ориентации). Другая точка зрения исходит из возможной локальной упорядоченности расположения макромолекул (школа Каргина, Гейля, Иеха и другие).

Температурная зависимость характеристик прочности полимеров в общем случае немонотонна. Повышение температуры сопровождается уменьшением прочности. Однако для большинства полимеров существует температурный интервал аномалии прочности полимеров. Этот температурный интервал соответствует увеличению степени дополнительной ориентации материала перед




Полимерного субстрата Полимерном субстрате Полимеров являющихся Полимеров действительно Полимеров характерны Полимеров хлоропрена Промывной жидкостью Полимеров колеблется Полимеров наблюдаются

-
Яндекс.Метрика