Главная --> Справочник терминов


Полимеров возникает Возможность упорядочения макромолекул, проявляющегося благодаря межмолекулярному взаимодействию и тепловому движению отрезков цепей (сегментов), определяет наличие у полимеров разных классов надсегментальных и надмолекулярных образований, представляющих собой структуры с различной степенью де,-фектности. Эти надмолекулярные структуры определяют важнейшие механические свойства и кристаллических, и некристаллических полимеров, в частности их деформационные и прочностные свойства.

Фракционирование методом гель-проникающей хроматографии (ГПХ) основано на применении принципа молекулярного сита, т. е. разделение молекул происходит только по размерам и не зависит от химической природы компонентов. Это свойство отличает метод ГПХ от всех других методов, основанных на растворимости полимеров. Возможность разделения только по размерам особенно важна для сополимеров и полимерных веществ биологического происхождения (белков, нуклеиновых кислот и др.).

Рассмотренные типы полимеризационных смол являются кар-боцепными полимерами и относятся к группе термопластичных материалов (стр. 443). Характерная их особенность —• отсутствие прочных химических связей между макромолекулами. Связь между ними осуществляется только сравнительно слабыми межмолекулярными силами. Термопластичные полимеры размягчаются при нагревании и переходят в вязкотекучее состояние. В процессе нагревания необратимых изменений с образованием сетчатых структур не происходит. Особенность этих полимеров — возможность многократной термической переработки с использованием методов прессования, вальцевания, литья под давлением и т. д.

На основании общих представлений теории строения жидкостей (глава VI) механизм диффузии газа в полимерах состоит в перемещении молекул газа отдельными импульсами через отверстия (дырки), которые образуются и исчезают в полимерах в непосредственном соседстве с молекулами диффундирующего вещества. Эти отверстия в эластических полимерах появляются в результате флюктуации плотности при тепловом движении отрезков цепей. Чем больше гибкость цепи, тем больше вероятность таких флюктуации и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхло, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт).

Приведенное рассуждение качественно объясняет уже отмечавшееся важнейшее свойство полимеров — возможность их существования при одних и тех же условиях в течение длительного времени в метастабильных состояниях, кардинально различающихся по структуре, а следовательно, и свойствам. Теперь мы можем ответить и на вопрос, при каких температурах это возможно, а именно: при температурах ниже той, при которой время, требующееся для перестройки структуры, становится больше времени воздействия на полимер.

Природа высокоэластичности объясняется физическими свойствами цепных молекул. Основное свойство последних, обуславливающее высокоэластнч-ность полимеров, — возможность внутреннего вращения вокруг единичных связей, приводящая к гибкости и легкой сворачиваемое™ полимерных цепей. Гибкость отчетливо проявляется, когда тепловое движение достаточно интенсивно. В стеклообразном состоянии деформация связана с изменениями средних расстояний между атомами и валентных углов полимерной цепи, в высокоэластнческом — с ориентацией н перемещением звеньев гибкой цепи без изменения среднего расстояния между соседними атомами.

Резина представляет собой многокомпонентную систему, состоящую из эластомера (каучука) и добавок, которые вступают в сложное взаимодействие с каучуком и друг с другом. Основной компонент системы — эластомер (каучук); он представляет собой полимер, отличительной особенностью которого является низкая температура стеклования или кристаллизации, обеспечивающая изделиям из этих полимеров возможность эксплуатации в высокоэластичном состоянии в достаточно широком температурном интервале (—100-f--^ +300 °С). В настоящее время кроме натурального каучука (НК) резиновая промышленность имеет в своем распоряжении широкий ассортимент синтетических каучуков (СК), что позволяет создавать резиновые изделия с весьма разнообразными свойствами. Возможности резиновой промышленности в этом плане расширяются при использовании метода совмещения каучуков друг с другом или с другими полимерами. Применение различных видов добавок (ингредиентов резиновых смесей) позволяет еще больше разнообразить свойства резин. Невулканизованную смесь каучуков с ингредиентами называют резиновой смесью, и она является основным материалом, из которого изготавливается резиновое изделие.

Преимуществом гель-проникающей хроматографии является высокая скорость анализа и его пригодность для всех растворимых полимеров, возможность полной автоматизации метода, относительно низкая стоимость приборов [27].

На основании общих представлений теории строения жидкостей (глава VI) механизм диффузии газа в полимерах состоит в перемещении молекул газа отдельными импульсами через отверстия (дырки), которые образуются и исчезают в полимерах в непосредственном соседстве с молекулами диффундирующего вещества. Эти отверстия в эластических полимерах появляются в результате флюктуации плотности при тепловом движении отрезков цепей. Чем больше гибкость цепи, тем больше вероятность таких флюктуации и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхло, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт).

На основании общих представлений теории строения жидкостей (глава VI) механизм диффузии газа в полимерах состоит в перемещении молекул газа отдельными импульсами через отверстия (дырки), которые образуются и исчезают в полимерах в непосредственном соседстве с молекулами диффундирующего вещества. Эти отверстия в эластических полимерах появляются в результате флюктуации плотности при тепловом движении отрезков цепей. Чем больше гибкость цепи, тем больше вероятность таких флюктуации и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхло, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт).

К сожалению, в настоящее время неизвестны более детальные сведения о влиянии характера топологической организации сетчатого полимера (нетолько брутто-количества узлов, но и характера их распределения, количества циклов различного размера и строения и т. п.) на морфологические особенности сетчатых полимеров. Такие работы на сегодняшний день отсутст-вуют, однако подобная информация была бы весьма полезна, так как, с одной стороны, она дала бы возможность найти более тесную связь между топологической и надмолекулярной структурой сетчатого полимера, с другой — на стадии синтеза полимера более целенаправленно управлять ими. Из рассмотренного выше материала очевидно, что подобные исследования представляют интерес в первую очередь для сетчатых полимеров с низкой концентрацией узлов сетки, в которых могут реализоваться различные морфологические структуры. С повышением концентрации узлов сетки полимеров возможность регулирования их морфологии отходит на задний план;, для густосетчатых полимеров эта задача оказывается уже в принципе невыполнимой, так как для последних характерна лишь единственная надмолекулярная организация — глобулярная.

В результате ориентационной вытяжки линейных аморфных полимеров возникает анизотропия их физических свойств вдоль и поперек направления вытяжки. При этом для различных свойств подобная анизотропия выражена по-разному. Например, для двойного лучепреломления и механической прочности анизотропия довольно значительна, а для модуля упругости — гораздо слабее, если только полимер не доведен до сверхориентированного состояния, когда начинается фибриллизация. Впрочем, фибриллизация чаще наблюдается у некристаллизующихся полужестких полимеров и всегда — у кристаллизующихся. Кроме того, анизотропия свойств зависит от типа полимера. По сравнению с кристаллическими аморфные полимеры при вытяжке ориентируются плохо: даже при больших степенях вытяжки остается довольно большой разброс направлений ориентации сегментов м'акро-молекул.

Примерно каждые десять лет физика и механика полимеров претерпевает коренные изменения, возникают ее новые разделы. Так, биофизика полимеров, физика жесткоцепных полимеров, релаксационная спектрометрия полимеров сформировались или получили наибольшее развитие за последнее десятилетие. В связи с этим на каждом этапе развития физики и механики полимеров возникает необходимость в новом учебном пособии, отражающем современное развитие физики полимеров. Предлагаемое учебное пособие, как надеются' авторы, в какой-то степени поможет в решении такой задачи и будет полезно для студентов вузов, аспирантов вузов и научно-исследовательских институтов и молодых специалистов различных отраслей промышленности, работающих в области получения и применения полимерных материалов.

1 Инкремент гомологического ряда, содержащий п остатков U, может быть рассмотрен как U-полимер. Набор таких гомологов-полимеров возникает, например, при теломериза-ции производных этилена.

При смешении двух и более полимеров может наблюдаться ситуация, когда между цепями этих полимеров возникает дополнительное сильное межмолекулярное взаимодействие, которое не проявляется между макромолекулами каждого из полимеров, взятых в отдельности. Это могут быть водородные связи или сильные диполь-дипольные взаимодействия. Анализ влияния этих взаимодействий на температуру стеклования будет проведен ниже.

лее упорядоченная структура таких полимеров возникает в высокоориен-

Существенно, что низкомолекулярные аналоги повторяющихся звеньев макромолекул (например, пропионовая кислота, N-этилпиридин и т. п.) адъювантного действия не оказывают. Более того, иммуностимулирующая активность в каждом данном ряду полимеров возникает лишь после достижения ими определенной степени полимеризации [68] и возрастает при ее дальнейшем росте [82].

Кроме того, полученный экспериментальный материал подтверждает возможность разделения порядка, возникающего в полимере при ориентации полимерных молекул и при кристаллизации. При кристаллизации полимеров возникает дополнительный порядок в системе, но доля его невелика по сравнению с упорядоченностью в ориентированных образцах.

У большинства молекул в аморфном состоянии звенья различных цепей располагаются в пространстве случайно и практически не определяют взаимное расположение своих соседей. Однако при соответствующих условиях (температура, давление или растягивающее напряжение, а также растворитель) может происходить самопроизвольное упорядочение отдельных участков цепных молекул. Это упорядочение является результатом того, что в действительности звенья ориентированы не произвольно относительно друг друга, а повернуты на некоторые углы, определяемые величинами потенциальных барьеров, препятствующих свободному вращению. Следовательно, в противоположность аморфному или жидкому фазовому состоянию полимера в целом отдельные макромолекулы существуют теперь в состоянии конформационного порядка. Упорядоченные цепи или их участки обычно образуют регулярную трехмерную решетку с параллельной упаковкой осей цепей. В зависимости от условий кристаллизации геометрическая форма отдельных молекул может быть полностью вытянутой, спиральной или складчатой. Существенно то, что у полимеров возникает состояние трехмерной упорядоченности, которое в основных чертах аналогично кристаллическому состоянию низкомолекулярных веществ. Этот весьма общий вид пространственного расположения цепных макромолекул называется кристаллическим состоянием полимеров.

«Физическая химия полимеров в настоящее время вполне определилась как самостоятельный раздел физической химии, с одной стороны, и химии высокомолекулярных соединений, с другой...» — этими словами начиналось предисловие к «Справочнику по химии полимеров» (Киев : Наук, думка, 1971.— Авт.: Ю. С. Липатов, А. Е. Нестеров, Т. М. Гриценко, Р. А. Веселовский ) — первому отечественному справочному изданию по этой так бурно развивающейся области современной науки. И вот читателю предлагается новый «Справочник по физической химии полимеров». Возникает естественный вопрос: является ли настоящее издание переработанным и расширенным изданием предыдущего справочника.

Одновременно с ростом производства и потребления полимеров возникает и другая задача — рациональное использование и уничтожение отслуживших полимерных изделий. Эта важная народнохозяйственная проблема уже сейчас требует решения, так как она включает не только изыскание вторичного сырья для полимерной и других отраслей промышленности, но и защиту окружающей среды от накапливающихся отработанных полимерных материалов, которые не будучи созданы природой ею не ассимилируются. Широкое проникновение полимеров в быт, в легкую и пищевую промышленность имеет следствием накопление отходов, которые зачастую просто выбрасывают и тем самым создают потенциальную угрозу засорения окружающих нас лесов, полей, рек, озер и т. д. Широкий




Полимерно мономерной Промывных жидкостей Полимеров достаточно Полимеров характерно Полимеров используется Полимеров исследование Полимеров макромолекулы Полимеров находятся Полимеров некоторые

-
Яндекс.Метрика