Главная --> Справочник терминов Растяжении вулканизатов кристаллообразование при растяжении происходит только в особо благоприятных условиях. Так, возрастание прочности наполненных резин на основе полибутадиена с увеличением содержания цис-\,4-звеньев, видимо, связано с кристаллизацией полимерных цепей при растяжении в присутствии сажи, хотя в ненаполненных резинах это явление выражено гораздо слабее [36]. Однако при одноосном растяжении происходит обратимое уменьшение площади поперечного сечения образца, обусловливающее деформацию сжатия еу (см. рис. 3.3, б-З): За исключением ПК, у неориентированных аморфных полимеров в процессе вынужденной эластичности при растяжении не зафиксирован рост числа разорванных цепей. Данное поведение является результатом различий морфологии цепей. В отсутствие кристаллитов большие осевые усилия, вызывающие разрыв цепей, могут быть получены лишь при наличии трения между проскальзывающими сегментами цепей. Расчетная объемная концентрация разрывов цепей (из-за большого числа проскальзывающих сегментов) намного меньше, чем в частично кристаллических полимерах. Кроме того (ввиду отсутствия эффекта выравнивания микрофибриллярной подструктуры), макроскопическое ослабление материала при растяжении происходит прежде, чем достигаются значения напряжений и деформаций, достаточные для равномерного распределения разрывов цепей. Исследования влияния ориентации цепи на начало роста трещины серебра показывают, что поперечная ориентация цепей по отношению к направлению действия главного напряжения ускоряет начало роста такой трещины [89, 153]. Поскольку меньшее число цепных сегментов ориентировано в направлении главного напряжения, критические локальные деформации достигаются при меньших напряжениях (гл. 3, разд. 3.4.5). В то же время напряжение начала роста трещины серебра возрастает с увеличением степени соосности цепей в направлении действия напряжения (увеличение степени ориентации, малый угол 9 между направлениями вытяжки и главным напряжением). При достаточной соосности цепей напряжения начала роста трещины серебра будут выше напряжения вынужденной эластичности при сдвиге, так что трещины серебра не образуются. В образцах ПС при 20°С вынужденная эластичность при растяжении происходит при значении удлинения Я = 2,6 или более, а также если 9(Я) меньше 20—30° [153]. Особого упоминания заслуживает результат Холла и Хорса [153], заключающийся в том, что ориентация молекул оказывает лишь слабое влияние на ориентацию плоскости с трещиной серебра. Полимеры со стереорегулярным строением макромолекул, не способные кристаллизоваться при заданной температуре или кристаллизующиеся чрезвычайно медленно, при той же температуре легко кристаллизуются, будучи растянутыми. Это объясняется тем, что при растяжении происходит ориентация макромолекул и, следовательно, упорядочение в расположении сегментов. Упорядочение под действием растяжения облегчает возникновение дальнего порядка в результате кристаллизации. ности при растяжении происходит сравнительно медленно (рис. 12). При растяжении происходит неравномерное последоватечь-ное растягивание цепей между узтами, расположенных в направлении растяжения, с переходом макромолекул из свернутого в распрямленное состояние, сопровождающимся снижением энтропии Из-за дефектов сетки прежде всего распрямляются и растягиваются наиболее короткие участки /, ориентированные в направлении растяжения, затем более дтипные I?. В волокнах полимерные молекулы находятся в высокоориентированном состоянии. Поэтому волокна прочны вдоль оси и непрочны в поперечном направлении; разрушение волокон при растяжении происходит не всегда точно в плоскости их поперечного сечения, а часто путем сочетания отрывов участков волокна и их сколов вдоль оси (IV тип разрушения, см. рис. 2). При растяжении под действием внешней силы полимерного образца, находящегося в высокоэластическом состоянии, макромолекулы приобретают вытянутые конформации. Вытянутые кон-формации могут быть осуществлены меньшим числом способов, чем свернутые, поэтому они характеризуются меньшей термодинамической вероятностью и меньшей энергией. Таким образом, при растяжении происходит вынужденный переход образца из состояния с большей энтропией к состоянию с меньшей энтропией, следствием чего является стремление образца к возврату в начальное состояние. Этим обусловлена обратимость высокоэластической деформации. Ведущее положение, которое занимают измерения при растяжении среди других видов нагружения, не случайно. К преимуществам этого вида испытаний относятся сравнительно простой способ достижения однородного поля деформации в большом объеме материала, возможность реализации характерных для полимеров больших деформаций, возможность прямо переходить от испытаний блочных материалов к испытанию тонких листов и пленок. В измерениях при растяжении происходит изменение не только формы материала, но и его объема, что в некоторых случаях принципиально важно для оценки поведения материала. В испытаниях на растяжение легко осуществляется переход от жестких материалов к эластичным. Сказанное позволяет на примере растяжения рассмотреть все общие вопросы измерений с регистрацией диаграммы напряжение — деформация. Под теоретической прочностью ат твердого тела [1.2, 1.3] в соответствии с классическим определением Борна и Цвикки понимается прочность тела с идеальной (не искаженной повреждениями и дефектами) структурой при температуре, равной абсолютному нулю, в условиях квазистатической однородной деформации растяжения и сдвига. Эти условия обеспечивают одинаковую нагруженность всех межатомных (химических) и межмолекулярных связей и одновременный разрыв всех связей по поверхности разрушения при одноосном растяжении и сдвиге. При одноосном растяжении происходит удаление друг от друга атомных плоскостей в направлении растяжения, а при сдвиге — скольжение атомных плоскостей. и при одинаковом соотношении их в макромолекулах обоих сополимеров. Привитые сополимеры полибутадиена и акрилонитрила пссле вулканизации, как и вулканизаты каучука СКН, превосходятвулка-низаты натурального каучука или полибутадиена по теплостойкости и атмосферостойкости. Привитой сополимер отличается большей прочностью и эластичностью по сравнению с простым сополимером бутадиена и акрилонитрила. Без введения усиливающего наполнителя предел прочности при растяжении вулканизатов привитого сополимера может достигать 174 кг/см2, относительное удлинение—765%, предел прочности при растяжении вулканизатов простого сополимера Вулканизаты натрий-дивиниловых каучуков, так же как и других некристаллизующихся синтетических каучуков, в отличие от вулканнзатов из натурального каучука без наполнителей имеют низкий предел прочности при растяжении. При применении в качестве активного наполнителя газовой канальной сажи предел прочности при растяжении повышается до 160 кгс/см2 при относительном удлинении 450—600%. Предел прочности при растяжении вулканизатов в значительной степени зависит от пластичности каучука и тем выше, чем меньше его пластичность. Ненаполненные вулканизаты СКС имеют невысокий предел прочности при растяжении —35—50 кгс/см2. Предел прочности при растяжении вулканизатов саженаполненных смесей зависит от содержания дивиниловых звеньев в каучуке, с их увеличением прочность вулканизатов понижается. Сажевые вулканизаты ди-винил-стирольного каучука имеют предел прочности при растяжении до 250—280 кгс/см2; по эластическим свойствам эти каучуки уступают натуральному каучуку. С увеличением содержания звеньев нитрила акриловой кислоты в молекуле дивинил-нитрильного каучука увеличивается предел прочности при растяжении вулканизатов, сопротивление истиранию, масло- и бензостойкость, но понижается эластичность и морозостойкость. Температура хрупкости вулканизатов СКН-18 _58 н-----60 °С; СКН-26 —40 ч-----50 °С; СКН-40 —26 -.-----28 °С. Низкомолекулярные силоксановые каучуки СКТН обладают текучестью и отверждаклся в присутствии катализаторов при комнатной температуре, что является весьма ценным их свойством. В зависимости от назначения их выпускают с молекулярным весом от 20 000 до 100 000. Предел прочности при растяжении вулканизатов СКТН составляет 15—25 кгс/см2. Резины из СКТН могут эксплуатироваться при температурах от —60 °С до +300 °С, Предел прочности при растяжении вулканизатов фторкаучука (Кэль-эф) составляет 20—40 кгс/см2, морозостойкость их невысокая. Вулканизаты из дивинил-стирольного каучука с сульфенами-дами БТ, Ц и М равноценны по свойствам. Резиновые смеси с этими ускорителями, особенно с сульфенамидом М, отличаются замедленным начальным периодом вулканизации и, в соответствии с этим, стойкостью к подвулканизации. По сравнению с каптаксом все сульфенамиды значительно повышают модули и предел прочности при растяжении вулканизатов из натурального каучука. Сульфенамид Ц и сульфенамид М отличаются большей стабильностью по сравнению с сульфенамидом БТ, кроме того, они являются кристаллическими веществами, что облегчает их хранение, применение и улучшает условия труда3. Наполнители принято подразделять на неактивные и активные наполнители, часто называемые усилителями. Усилители увеличивают предел прочности при растяжении резины, сопротивление истиранию и раздиру. Неактивные, или инертные, наполнители не повышают физико-механических свойств резины. Это различие оказывается достаточно строгим только при применении наполнителей с натуральным каучуком. Таким образом, характер действия наполнителей в значительной степени зависит от природы каучука. Активность наполнителей при применении их с некристаллизующимися каучуками (натрий-дивиниловым, диви-нил-стирольным, дивинил-нитрильным) оказывается значительно выше, чем при применении с кристаллизующимися каучуками (натуральным, бутилкаучуком и хлоропреновым). Если предел прочности при растяжении вулканизатов натурального каучука при применении наиболее активных наполнителей возрастает на 20 — •30%, то предел прочности при растяжении вулканизатов СКВ возрастает в 8—10 раз. Наполнители неактивные в смесях с натуральным каучуком оказываются активными в смесях с натрий-дивиниловым и другими синтетическими каучуками, но неактивные наполнители, как правило, не повышают сопротивление вулканизатов этих смесей истиранию. Применяют в резиновой промышленности в настоящее время главным образом сепарированный мел в дозировках до 60—70% от массы каучука. Активированный мел является усилителем для дивинил-стирольных и натрий-дивиниловых каучуков. Он повышает предел прочности при растяжении вулканизатов до 100 кгс/см2, увеличивает эластичность, сопротивление раздиру и истиранию. Отмечают [7], что большое влияние на свойства смесей и вул-канизатов на основе СКИ-3 оказывает содержание в н-их избыточной влажности (выше 0,1—0,2%). При повышении влажности до 0,5% каучук интенсивно деструктируется при (переработке, а затем может образовывать вторичные структуры, что повышает твердость и склонность смесей к подвулканизации, ухудшает распределение технического углерода и на 10—15% понижает прочность при растяжении вулканизатов. Как видно из рис. 2.12, прочность при растяжении вулканизатов в зависимости от продолжительности вулканизации изменяется по экстремальной кривой, тогда как относительное удлинение и степень сшивания—по монотонным, т. е. в соответствии с закономерностями, характерными для формирования сеток с гетерогенной .вул'Канизацианной структурой. Растворение происходит Растворенным веществом Растворенном состоянии Растворимых комплексов Растворимое состояние Радикальных процессов Растворимость органических Растворимость увеличивается Растворимости полимеров |
- |