Главная --> Справочник терминов


Разветвленных полимеров Проведенные исследования позволили установить характер влияния условий проведения процесса полимеризации на молеку-лярно-массовое распределение и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков, получаемых методом эмульсионной полимеризации (сополимеры бутадиена со стиролом и а-метилстиролом) и полимеризацией в растворе под действием комплексных катализаторов (цыс-поли-бутадиен и цис-полиизопрен) и предложить рациональные пути получения этих каучуков с оптимальными молекулярными параметрами (см. гл. 3, 4).

Модели разветвленных макромолекул:

На последнем замечании следует остановиться подробнее. В 0-условиях, когда молекулярные цепи ведут себя как бесконечно тонкие нити, способные к самопересечению, размеры разветвленных макромолекул естественно оказываются меньше размеров линейных цепей той же молекулярной массы, так как в этих условиях все ветви, выходящие из одного узла, сворачиваются независимо в одном и том же объеме. Очевидно поэтому, что размеры клубка данной молекулярной массы существенно уменьшаются с увеличением числа ветвей.

Расчеты зависимости размеров макромолекул или [г]] от степени разветвленности [3, 17] лежат в основе практически единственного в настоящее время метода количественного определения разветвленности, заключающегося в сравнении измеренных в в-рас-творителе размеров разветвленных макромолекул с размерами линейных макромолекул той же молекулярной массы. При этом размеры линейных макромолекул можно вычислить из экспериментальных данных для разветвленных цепей той же природы с помощью специальных методов экстраполяции данных к малым значениям молекулярных масс [40].

3. Протекание реакций передачи активных центров на полимерную цепь (например, за счет реакций металлации, взаимодействия с двойными связями, а также по катионному механизму) приводит к образованию разветвленных макромолекул и, соответственно, дальнейшему расширению ММР,

Было показано, что при полимеризации бутадиена с использованием гомогенной каталитической системы TibCb + Al (изо-С4Н9)3 образуются линейные полимеры с преимущественным содержанием (~90%) г{«с-1,4-звеньев. В условиях полимеризации при низких температурах (<15°С) этот процесс обладает многими чертами полимеризации по механизму живых цепей: уменьшение средней молекулярной массы при увеличении концентрации катализатора, увеличение средней молекулярной массы с возрастанием глубины конверсии, узкое ММР и др. Для получения с помощью этой каталитической системы каучуков с приемлемыми технологическими свойствами применяют различные приемы, приводящие к расширению ММР и (или) образованию разветвленных макромолекул. В табл. 4 приведены молекулярные

Пластицирующимися являются, как правило, полимеры со сложным молекулярным составом; они обычно имеют широкое ММР, высокую среднюю молекулярную массу и содержат значительное количество разветвленных макромолекул с длинными боковыми ветвями или рыхлых микрогетерогенных структур (полимерных частиц)—микрогелей, микрокристаллитов и др. [10].

Для непластицирующихся полимеров вязкость смеси определяется молекулярным строением исходных каучуков. Ньютоновская вязкость линейных полимеров при равной молекулярной массе увеличивается в ряду сополимер этилена с пропиленом > > цис-полибутадиен > цыс-полиизопрен. 'Однако многочисленные экспериментальные данные показывают, что течение большинства высокомолекулярных эластомеров не является ньютоновским; их вязкость уменьшается при повышении скорости или напряжения сдвига. Этот эффект выражен тем сильнее, чем шире ММР и больше средняя молекулярная масса данного эластомера. Наличие разветвленных макромолекул и гетерогенных структур (полимерных частиц) усиливает влияние скорости сдвига на вязкость. При этом в области малых скоростей сдвига вязкость таких поли-

Наличие разветвленных макромолекул с длинными боковыми ветвями приводит к увеличению (хотя в ряде случаев и относительно небольшому) вязкости по Муни этих полимеров по сравнению с линейными равной молекулярной массы и полидисперсности [28]. Повышение вязкости по Муни происходит также по

Итогом обеих реакций является нарушение регулярности построения полимерной цепи и появление разветвленных макромолекул. Так как энергия активации вторичных реакций значительно выше энергии активации реакции роста, доля вторичных реакций падает с понижением температуры полимеризации. Применение окислительно-восстановительных систем для инициирования радикальной полимеризации бутадиена позволило снизить температуру полимеризации до 0°С и существенно уменьшить раз-ветвленность образующегося полимера [2, с. 1—86].

В связи с этим был разработан способ получения нехладоте-кучего полимера этого типа (СКДЛПР) путем сополимеризации бутадиена с небольшим количеством дивинилбензола, вызывающего образование частично разветвленных макромолекул [64]. Его хладотекучесть составляла всего 7—10 мм/ч. Также получают нетекучий полибутадиен с повышенным содержанием 1,2-звеньев (СКБСР).

Значения Мкр-Ю~3 некоторых эластомеров таковы: полиизобу-тилена 15—17; полидиметилсилоксана 30—45; цис-1,4-полибута-диена 5,6; г{ыс-1,4-полиизопрена 5,74 [19, 20]. Для перечисленных эластомеров значения показателя степени а в уравнении T)O ~ M1 при М ^ МКр лежат в интервале 3,2—3,6. Исключение составляет полиизопрен, у которого а имеет несколько большее значение, равное 3,95 [20], что может быть приписано наличию нелинейных структур в этом эластомере. Вообще же влияние разветвленности на ньютоновскую вязкость неоднозначно и сильно зависит от типа и степени разветвленности. В качестве простейшего эмпирического правила можно считать, что если молекулярная масса боковых ответвлений цепи М' > Мкр, то разветвленность увеличивает •По и, напротив, если М' < Мкр, наблюдается уменьшением ньютоновской вязкости разветвленных полимеров по сравнению с линейными равной молекулярной массы.

Следует отметить также, что для улучшения технологических свойств рассматриваемых каучуков были разработаны приемы, приводящие к получению разветвленных полимеров [5, г, д].

Поэтому анализ данных по пластичности и восстанавливаемости следует дополнять другими измерениями; в частности, для не очень сильно разветвленных полимеров полезную информацию дают измерения хладотекучести, т. е. эффективной вязкости при скоростях сдвига порядка 10~2 с"1.

Рассмотренные закономерности относятся к линейной поли' конденсации. ММР разветвленных полимеров значительно отли* чается от ММР полимеров, полученных в процессе линейной поликонденсации [21, с. 211].

Таким образом, функция молекулярно-массового распределения для разветвленных полимеров значительно шире, чем для линейных.

3. Разветвленные полимеры. Получить прочные волокна на основе разветвленных полимеров не удается вследствие затруднений, возникающих при их ориентации и формировании равномерной структуры. Однако разветвленные полимеры, в том числе и привитые сополимеры, представляют существенный интерес в качестве добавок к линейным волокнообразующим полимерам или смесям различных полимеров с целью достижения большей структурной однородности формуемых волокон.

Задача. На основе разветвленных полимеров получить волокна с удовлетворительным комплексом механических свойств не удается. Однако добавка разветвленных полимеров, синтезированных прививкой одного полимера на другой, уменьшает структурную неоднородность изделий из смесей двух волокно-образующих полимеров, природа которых идентична основной и привитым цепям. Волокна, получаемые из смесей таких несовместимых полимеров в присутствии привитых сополимеров, обладают высокими механическими показателями. Примером могут служить волокна на основе смесей вторичного аце-

Разветвленность макромолекул влияет на гю и на величину аномалии вязкостных свойств. При одинаковых значениях Mw значения гю концентрированных растворов (или расплавов) разветвленных полимеров оказываются меньшими, чем линейных. В некоторых случаях эти различия достигают десятичного порядка. У разветвленных полимеров увеличение гю при повышении Mw происходит в большей мере, чем у линейных. С увеличением т и у влияние разветвленности на г]Эф ослабевает и при

Большинство линейных и разветвленных полимеров способно кристаллизоваться. К ним относятся, например, политетрафторэтилен, полиформальдегид, полиамиды, полполефииы, поливинил-хлорид, изотактический полистирол, каучук, шерсть и др. При кристаллизации полимеров возрастают плотность, модуль упругости ?, предел кратковременной прочности ов и уменьшается величина предельной деформации ев.

Свойства разветвленных полимеров зависят от длины боковых ответвлений, частоты их расположения в цепи и от химического строения звеньев, составляющих основные и боковые цепи. Частое расположение боковых ответвлений препятствует сближению макромолекул друг с другом. Вследствие этого уменьшаются силы межмолекулярного взаимодействия, что приводит к увеличению

Для линейных полимеров, являющихся полимергомологами различной степени полимеризации, характерна полидисперсность главным образом по длине макромолекул. Для оценки степени полидисперсности разветвленных полимеров и сополимеров существенное значение имеют не только разные размеры основной цепи макромолекул, но и степень разветвленности, длина боковых ответвлений, состав звеньев основной цепи и ответвлений.




Разрушения органических Разрушение эластомеров Разрушение начинается Разрушении полимеров Разветвленный полисахарид Рацемизации оптически Разветвленных углеводородов Разветвленного полиэтилена Развивается производство

-
Яндекс.Метрика