![]() |
|
Главная --> Справочник терминов Регенерации абсорбента 2. Процессы с периодической регенерацией катализатора путем выжига углеродистых отложений. Они также проводятся на неподвижных катализаторах и при сравнительно небольшом давлении (14—20 ати). 2. Процессы с периодической регенерацией катализатора путем выжига углеродистых отложений. Они также проводятся на неподвижных катализаторах и при сравнительно небольшом давлении (14—20 ати). Реакция завершается взаимодействием аниона (3) с молекулой воды и регенерацией катализатора: Возможно также соединение сокатализатора с растущей цепью с образованием ковалентной связи и регенерацией катализатора: Вслед за этапом, на котором образуется а-комплекс, следует обычно более быстрый этап отрыва протона ионом РеСЦ с образованием НС1 и регенерацией катализатора. О таком соотношении скоростей свидетельствует отсутствие кинетического изотопного эффекта. Однако при галогенировании соединений, обладающих высокой реакционной способностью, например аминов и особенно фенолов, соотношение этих этапов может изменяться. Названные соединения с очень большой скоростью образуют сг-комплексы, которые иногда настолько стабильны, что их можно выделить из реакционной массы. В этих случаях этап отрыва протона от а-комп-лекса лимитирует суммарную скорость галогенирования и наблюдается кинетический изотопный эффект. Для алкилирования по Фриделю — Крафтсу требуются лишь каталитические количества хлорида алюминия. Причина этого снова в том, что ион А1С13Х© и протон, освобождающийся на последней стадии реакции, реагируют с регенерацией катализатора. При выделении и промывке М,М'-дифенил-п-фенилекдиямииа побочный комплекс разлагается с регенерацией катализатора: Во-вторых, сокаталиэатор может реагировать с растущей цепью с образованием ковалентной связи Реакция сопровождается регенерацией катализатора: Во-вторых, оокатализатор может реагировать с растущей цепью с образованием ковалентнон связи. Реакция сопровождается регенерацией катализатора Возможно также соединение сокатализатора с растущей цепью с образованием кова-лентной связи и регенерацией катализатора Если скорость превращения вещества А в продукт Р увеличивается в присутствии вещества С и при этом стехиометрия превращения А в Р не изменяется, то вещество С называют катализатором данной реакции; А часто называют субстратом. Во многих случаях имеются кинетические данные, убедительно показывающие, что катализируемая реакция протекает как многостадийный процесс: сначала А и С образуют промежуточное соединение, которое затем превращается в продукт Р с одновременной регенерацией катализатора С. Еще в 1902 г. Федерлин Процесс десорбции (регенерации) абсорбента прямо противоположен процессу абсорбции. При десорбции из насыщенного абсорбента отпариваются целевые компоненты, т. е. из жидкой фазы переводятся в газовую. Газовая фаза в десорбере создается подачей в нижнюю часть аппарата инертного газа (газа отпарки). Если счет тарелок в десорбере вести снизу вверх, а фактор абсорбции заменить фактором десорбции (отпарки) S = KW/L, то можно получить формулу десорбции, аналогичную формуле абсорбции. 3. Концентрация регенерированного абсорбента определяется по рнс. 47 при температуре контакта 30 °С и требуемой точке росы — 20 °С: л:1 = 99,5 мае. %. Концентрация насыщенного абсорбента выбирается исходя из практических соображений, а затем проверяется по расчету регенерации абсорбента: Xz= = 96 мае. %. В процессе разработки месторождения при увеличении влажности газа с падением давления концентрацию насыщенного- абсорбента можно изменять, что позволит поддерживать в определенных пределах скорость циркуляции абсорбента. Это необходимо для обеспечения нормального газогидродинамического режима работы тарелок в абсорбере и десор-бере. В схему процесса входят абсорбер, регенератор, выветрива-тели, теплообменники и насосы. Во многих случаях дополнительно вводятся также турбина для использования гидравлической энергии насыщенного раствора и рециркуляционные компрессоры. Регенерация растворителя осуществляется понижением давления и отдувкой топливным газом, водяным паром, инертным газом или воздухом. Отдувка воздухом, как показывает опыт эксплуатации, не рекомендуется при очистке газа, содержащего H2S, так как в регенераторе происходит частичное окисление H2S в серу кислородом воздуха. Сера может выпасть в виде осадка и затруднить процесс регенерации абсорбента. Схема процесса зависит от содержания и соотношения кислых компонентов в обрабатываемом газе. При низком объемном содержании СО2 (до 5%) можно ограничиться очисткой газа от H2S. В этом случае применяется схема с одноступенчатой очисткой. Если объемное содержание СО2 в очищаемом газе выше 5%, но меньше, чем содержание H2S, то также можно ограничиться одноступенчатой очисткой газа от кислых компонентов. При этом в результате одновременной абсорбции H2S и СО2 содержание двуокиси углерода снижается до приемлемого уровня, а кислый газ, получаемый при регенерации абсорбента, пригоден для процесса Клауса. Основными критериями при выборе абсорбентов, а следовательно, и процессов являются начальное и конечное содержание извлекаемых «нежелательных» компонентов в газе и заданное рабочее давление в системе или начальное и конечное парциальное давление их в условиях очистки. Начальное давление предопределяет кратность циркуляции абсорбента (удельный его расход). Конечное парциальное давление (или глубина очистки газа) зависит в первую очередь от степени регенерации абсорбента и от равновесного давления извлекаемого газа над раствором от температуры. Капитальные и эксплуатационные затраты определяются главным образом кратностью циркуляции и условиями регенерации растворителя. Следовательно, экономика процесса предопределяется в основном парциальными давлениями извлекаемых «нежелательных» компонентов в сыром и очищенном газе. На основе этих данных можно оценить, какой из растворителей — химический или физический — наиболее приемлем для заданных условий. После этого, учитывая специфику содержащихся в газе примесей и возможные варианты взаимодействия их с растворителями данной конкретной группы, можно выбрать процесс, который целесообразно будет использовать для проведения технико-экономического исследования. Во ВНИИгаз были выполнены исследования по изучению схем и условий работы узлов десорбции, которые свидетельствуют о возможности улучшения качества регенерации абсорбента и повышения термодинамической эффективности процесса десорбции. Ниже изложены результаты этих исследований [110]. На отечественных ГПЗ используют два метода регенерации абсорбента: I метод — извлечение легких углеводородов из насыщенного абсорбента осуществляется за счет снижения давления в системе и ввода в нижнюю кубовую часть десорбера водяного пара, который снижает парциальное давление углеводородов и тем самым способствует переходу легких компонентов из жидкого состояния в газообразное без повышения температуры в нижней части колонны (в этом случае тепло «вносится» в десорбер только с сырьевым потоком); II метод — извлечение легких углеводородов из насыщенного абсорбента обеспечивается за счет снижения давления в системе и подвода тепла в нижнюю кубовую часть десорбера. Первый метод обеспечивает высокую степень регенерации абсорбента. Однако он не получил широкого распространения, так как наличие в системе водяного пара приводит к необходимости осушки сжиженных газов, а также создает трудности в работе завода в зимнее время года. Технологический режим десорбции при вводе водяного пара: давление 0,2—0,3 МПа, температура сырьевого потока 125—140 °С, верха десорбера 90—115°С, низа десорбера 125—145 °С; расход водяного пара 2,4—2,8% масс, от общего количества абсорбента. ВНИИгаз на ряде ГПЗ провел обследование работы узлов десорбции без ввода водяного пара, которое показало, что в этом случае эффективность процесса существенно зависит от конструкции нижней части десорбера. На рис. II 1.71 приведены варианты конструктивного оформления нижней части десорбера газоперерабатывающих заводов. Отличительная особенность схемы 3 состоит в том, что при наличии в нижней части десорбера глухой тарелки абсорбент, стекающий с нижней барботажной тарелки десорбера, не смешивается с абсорбентом, циркулирующим через печь. Это создает благоприятные условия для регенерации абсорбента. В нижней части десорбера вместо глухой тарелки можно устанавливать вертикальную перегородку, которая разделяет С увеличением давления быстро растет глубина извлечения углеводородов. В последнее время за рубежом строят заводы, на которых абсорбция осуществляется под давлением 100 am и выше. Однако с увеличением глубины отбора отдельных компонентов в насыщенном абсорбенте увеличивается содержание низших углеводородов (метана, этана), что создает большие трудности при регенерации абсорбента. Для выделения неконденсирующихся углеводородов насыщенный абсорбент по выходе из абсорбера подвергается стабилизации, которая проводится в колонне, как правило, разделенной на две секции. В нижней секции из насыщенного абсорбента удаляются метан, этан и часть пропана. Эти газы направляются в верхнюю секцию колонны, где орошаются регенерированным холодным абсорбентом для выделения из газов пропана. Выделение метана, этана и части пропана из абсорбента осуществляется или путем его нагрева при помощи горячего регенерированного абсорбента или снижением давления по сравнению с давлением в абсорбере. Указанный аппарат позволяет эффективно отделять метан и этан при общем выделении пропана из газа более 60% и бутана более 95%. Выделение значительной части метана и этана снижает нагрузку на компрессор, конденсатор и этановую колонну. На указанном заводе, а также на некоторых других новых заводах наблюдается стремление к использованию в качестве теплоносителя не пара, а циркулирующего агента, нагреваемого в специальной печи. Указанный способ позволяет работать при более высоких температурах, что необходимо в связи с применением повышенных давлений, требующих повышения температуры при регенерации абсорбента. В качестве циркулирующего агента, как правило, применяется горячий регенерированный абсорбент, который отдает свое тепло насыщенному абсорбенту в десорбере и кипятильниках фракционирующих колонн. Кроме того, часть тепла абсорбента расходуется на получение пара, используемого для отпарки абсорбента при его регенерации. ![]() Реакциями приводящими Реакционных способностей Расходные коэффициенты Реакционно способных Реакторного излучения Рецептуры резиновых Регенерация адсорбента Регенерацией исходного Регенерации катализатора |
- |