![]() |
|
Главная --> Справочник терминов Релаксационных процессах цессами заключается в предэкспоненциальных коэффициентах в температурных зависимостях как вязкости, так и релаксации напряжения и долговечности. Разрывное напряжение характеризуется более слабой (в т раз) температурной зависимостью в соответствии с теорией. Энергия активации указанных процессов инварианта относительно напряжений (до 8 МПа), деформации растяжений (до 300%) и не зависит от того, сшит или не сшит эластомер. Установлены границы температурно-силового диапазона инвариантности энергии активации процессов вязкоупругости и разрушения. Совпадение энергий активации различных процессов в этих границах свидетельствует об общности природы процессов релаксации и разрушения в высокоэластическом состоянии. Полученная корреляция прочностных и релаксационных характеристик эластомеров позволяет прогнозировать прочностные свойства эластомеров по данным их релаксационной спектрометрии, с учетом, что аналогичные релаксационные, реологические свойства и степенной закон долговечности наблюдаются и для других эластомеров [12.16]. вынужденной высокоэластичности, а также зависимость релаксационных характеристик Неясным остается вопрос, что происходит между 104 и 106 Гц, хотя проще было бы трактовать Т* как своего рода тройную точку, связанную с разными типами сегментальной релаксации. Но мы стремимся показать как раз «живую» релаксационную спектрометрию и поэтому сознательно останавливаемся на нерешенных проблемах. Рис. XII. 5, с другой стороны, поучителен в методологическом плане: диапазон ТВЭ узок, как по температурам, так и частотам, а поэтому правильнее было бы строить трехмерные графики для релаксационных •спектров. С помощью ЭВМ это довольно просто. Дело, однако, не в характере графиков, а в необходимости одновременного установления зависимости релаксационных характеристик от частоты (времени воздействия) и температуры. В табл. 1.1 приведен пример релаксационных характеристик наполненных резин. Г. М. Бартенев делит релаксационный спектр на ряд участков, каждый из которых связан со своим релаксационным механизмом и имеет свое главное время релаксации Эь свои релаксационные характеристики Bt, Ut. Таким образом, при сшивании эпоксидных смол, начиная с некоторого значения Мс, зависящего от гибкости цепи и интенсивности межмолекулярного взаимодействия, происходит ограничение молекулярной подвижности и числа конформаций цепей между узлами сетки. Это подтверждается данными работы [55], в которой обнаружено исчезновение одного из вращательных изомеров в цепи эпоксидного полимера при сшивании. Эти изменения структуры цепи и межмолекулярного взаимодействия и приводят к наблюдаемым изменениям плотности упаковки, ТКР, релаксационных характеристик и других свойств трехмерных полимеров при увеличении плотности сшивания. Структура свободного объема неоднородна и сложным образом меняется в ходе отверждения. Граничный слой характеризуется эффективной толщиной, за пределами которой отклонение его свойств от свойств материала в объеме мало [4]. Из самого определения этой величины следует, что она зависит от метода определения. Кроме того, толщина граничного слоя обычно определяется не непосредственно, а из измерения показателей макроскопических свойств наполненных полимеров — релаксационных характеристик, плотности [27—29], термического коэффициента объемного расширения [30, 6, 59], сорбционных характеристик [27, 29, 31, 32]. Таким образом, при сшивании эпоксидных смол, начиная с некоторого значения Мс, зависящего от гибкости цепи и интенсивности межмолекулярного взаимодействия, происходит ограничение молекулярной подвижности и числа конформации цепей между узлами сетки. Это подтверждается данными работы [55], в которой обнаружено исчезновение одного из вращательных изомеров в цепи эпоксидного полимера при сшивании. Эти изменения структуры цепи и межмолекулярного взаимодействия и приводят к наблюдаемым изменениям плотности упаковки, ТКР, релаксационных характеристик и других свойств трехмерных полимеров при увеличении плотности сшивания. Структура свободного объема неоднородна и сложным образом меняется в ходе отверждения. Граничный слой характеризуется эффективной толщиной, за пределами которой отклонение его свойств от свойств материала в объеме мало [4]. Из самого определения этой величины следует, что она зависит от метода определения. Кроме того, толщина граничного слоя обычно определяется не непосредственно, а из измерения показателей макроскопических свойств наполненных полимеров — релаксационных характеристик, плотности [27—29], термического коэффициента объемного расширения [30, 6, 59], сорбционных характеристик [27, 29, 31, 32]. По какой причине предложена еще одна модель полимерного тела? Используемые ранее методы расчета релаксационных характеристик полимеров (Тобольского — Мураками, Бартенева — Брюханова, фцрмула Кольрауша) либо служили для обработки Бартенева — Брюханова метод расчета релаксационных характеристик Методы расчета релаксационных характеристик полимеров 151 ел., 227 ел. жизни ti. Эти представления согласуются с данными по рентгено-структурному анализу. Электронографическим методом в расплавах некоторых линейных полимеров обнаружены ориентированные микробяоки, внутри . которых цепи располагаются параллельно. Поперечные размеры этих микроагрегатов совпадают с данными Бартенева и Кучерского ** для размеров микроблоков, участвующих в медленных релаксационных процессах. Это указывает на существование в эластомерах упорядоченных микрообластей (микроблоков). Возможны микроблоки трех типов:-в виде складчатых, мицеллярных и глобулярных образований (тип /, 2, 3). Все три типа структур реализуются в различных полимерах: складчатая— в кристаллических полимерах, мицеллярная — в фибриллах и блоксополимерах, глобулярная — в растворах полимеров и в гибкоцепных полимерах3*. Для статического случая, когда со =- 0, е' = 1 -f- 4nNq2/k, а при о -> оо, е" == ест. Значение е"->•(), как при <о->0, так и при w -> оо и проходит через максимум, равный е"Макс = (4nNq2/k) (1//ш0) при и = «о (рис. VII. 4). Сдвинутая по фазе компонента е" так же характеризует энергетические потери, как и в случае релаксации дипольной поляризации. Резонансное поглощение для полимеров менее существенно, чем дипольные релаксационные потери. В случае резонансного поглощения области максимума е" и изменения е' существенно уже, чем при релаксационных процессах. В последних двух главах было показано, что это же относится и к откликам полимерных систем на электрические или магнитные воздействия: здесь можйо говорить о немеханических аналогах релаксационных (или «деформационных») состояний и соответствующих переходов. В тех случаях, когда в электромагнитных релаксационных процессах участвуют те же релаксаторы — элементы структуры, что и в механических, области соответствующих состояний и переходов оказываются близкими, хотя и не обяза- Структурные элементы, из которых образованы гибкоцепные полимеры (мелкомасштабные элементы, сегменты, надмолекулярные образования в виде микроблоков, частицы активного наполнителя, диполь-дипольные локальные поперечные связи, поперечные химические связи и т. д.), играют в релаксационных процессах роль кинетических единиц различных размеров и разной подвижности. Каждый тип кинетических единиц характеризуется своим наиболее вероятным временем релаксации т*, i=l, 2, ..., п (где п — число кинетических единиц различных типов и, следовательно, число различных релаксационных переходов, которые на спектре времен релаксации проявляются в виде тех или иных максимумов). При переходе к большим частотам происходит изменение температур проявления релаксационных процессов. При v=5- 10-3 Гц б-процесс— самый высокотемпературный, а при v—1,5- 104 Гц все процессы смещаются к высоким температурам, причем Хгпроцессы обгоняют б-процесс. Это объясняется отличием в размерах структурных единиц, участвующих в различных релаксационных процессах, а также отличием энергии активации для различных релаксационных механизмов. Значение релаксационной спектрометрии полимеров заключается еще и в том, что она представляет собой новый структурный метод, позволяющий выяснить не только природу и механизмы релаксационных переходов, но и структурные особенности полимерных материалов, в особенности молекулярную подвижность различных структурных элементов, участвующих в релаксационных процессах. Для статического случая, когда со = 0, e=l+4nNq2/m, а при ш-»-оо е=1. Значение е"-»-0 как при <о->-0, так и при со->°о (рис. 7.4), а при со = а>о оно проходит' через максимум: етах = = 4я^2/(т/ио). Сдвинутый по фазе компонент е" так же характеризует энергетические потери, как и в случае релаксации ди-польной поляризации. Резонансное поглощение для полимеров менее существенно, чем дипольные релаксационные потери. В случае резонансного поглощения области максимума к" и изменения е существенно уже, чем при релаксационных процессах. 7.1.6. Обработка экспериментальных данных Однако теперь следует различать и более конкретные свойства кинетических структоноз, ибо динамическая структура может изменяться под действием факторов разной природы — электрических, магнитных, механических и т. д. Соответственно, надо различать типы релаксации и хорошо понимать, что участие в релаксационных процессах одинаковых по шкале геометрических масштабов кинетических структонов, отнюдь не означает тождественности процессов, регистрируемых, скажем, дина-момеханическими или электрическими методами. основной цепи диановых эпоксидных олигомеров и полимеров [13]. Одновременно в полимере может быть несколько типов кинетических единиц, участвующих в данном релаксационном процессе при близких температурах или частотах переменного поля. Их идентификация часто сопряжена с большими трудностями, особенно в случае сетчатых полимеров [11, с. 202]. В табл. 1.1 приведены данные о релаксационных процессах (переходах) в пространственных эпоксидных полимерах. основной цепи диановых эпоксидных олигомеров и полимеров [13]. Одновременно в полимере может быть несколько типов кинетических единиц, участвующих в данном релаксационном процессе при близких температурах или частотах переменного поля. Их идентификация часто сопряжена с большими трудностями, особенно в случае сетчатых полимеров [11, с. 202]. В табл. 1.1 приведены данные о релаксационных процессах (переходах) в пространственных эпоксидных полимерах. Сумма интегралов, представляющая собой разность плотностей затраченной и возвращенной работы, дает количество энергии (на единицу объема), накопленной в образце вследствие проведения цикла растяжения и сокращения. Эта невозвращенная энергия может превращаться только в тепло, вызывающее нагревание полимера. Та часть механической энергии, которая при этом теряется в виде тепла, называется механическими потерями, которые тем больше, чем больше площадь гистерезисной петли. Подобные механические потери наблюдаются также при других релаксационных процессах. ![]() Рекомендуется принимать Раскрытие фуроксанового Рекомендует пользоваться Рекомендуют использовать Ректификации бутадиена Ректификационной установки Рекуперативного теплообменника Релаксацией напряжения Релаксации процессов |
- |