Главная --> Справочник терминов


Рентгенография электронография — после разрыва проходных молекул (т. е. разрушения той области, которая целиком отвечала бы за релаксацию напряжения во всей микрофибрилле) происходит быстрое деформационное упрочнение аморфной области.

На ранних стадиях исследований отмечалось, что молекулярная масса образца является важной переменной, характеризующей рост трещины серебра и ее разрыв. Радд [79] изучал релаксацию напряжения пленок ПС, находящихся в контакте с бутанолом, вызывающим образование трещин серебра. С помощью графика зависимости o(t)/a(0) от логарифма времени обнаружено, что время, необходимое для достижения уровня напряжения 40 %, на три порядка больше для образцов с большей молекулярной массой. Окончательный спад напряжения от 0,4а(0) до нуля происходил достаточно быстро при любых молекулярных массах образцов [79].

Прибор 2026РОС (рис. 5.5) предназначен для испытания резин на релаксацию напряжения при осевом сжатии. Прибор состоит из привода, подъемного винта 1, механизма 2 перемещения струбцины 3, термокамеры 5 и силоизмерителя 6. В камере смонтированы трубчатые электронагреватели и установлен вентилятор, обеспечивающий улучшение теплообмена и выравнивание температуры. Механизм перемещения струбцины предназначен для деформирования образцов и поворота струбцины при измерении силы реакции сжатых образцов. Струбцину поворачивают вручную, и она фиксирует-

Из уравнения (8.6) следует, что уменьшение напряжения со временем в условиях релаксации происходит экспоненциально. Если деформации достаточно малы, формула (8.6) с хорошим приближением описывает релаксационный процесс одинаковых по природе кинетических единиц. Релаксацию напряжения различных по природе кинетических единиц можно описать набором моделей Максвелла, соединенных параллельно. Число моделей в таком наборе должно соответствовать числу кинетических единиц т, участвующих в процессе релаксации. Аналитическое выражение, описывающее процессы релаксации напряжений в наборе кинетических единиц, можно получить суммированием формул типа (8.6) :

Динамические характеристики оптико-механических свойств полимеров в значительной мере могут отличаться от статических из-за влияния временного фактора. Так, при действии кратковременных имульсных нагрузок процессы, связанные с регистрацией в модели оптической картины полос, длятся от нескольких микросекунд до сотен микросекунд. В этом случае обычные квазистатические испытания на ползучесть и релаксацию напряжения не могут отражать сути происходящих при динамическом воздействии явлений, протекающих в полимерном материале.

П. Каково воздействие радиации на релаксацию напряжения сетчатого и линейного полимеров?

пристенное скольжение при использовании гладкого и гравированного роторов, релаксацию напряжения, вулканизационные свойства материала при сдвиговом течении, охарактеризовать деструкцию полимеров в процессе переработки. Достоинствами прибора являются автоматическая обработка результатов и небольшая продолжительность (не более 2 минут) достижения образцом заданной температуры, что особенно важно для точной оценки способности резиновых смесей к предварительной вулканизации. Ожидается [23], что со временем TMS заменит "стандартный прибор" - вискозиметр Муни.

Рассмотрим релаксацию напряжения. Для этого подставим (IX. 28) в уравнение (IX.14) и затем в уравнение (IX. 10); тогда:

Рассмотренные простейшие модели даже качественно не описывают основные вязкоупругие свойства. Так, модель Максвелла не описывает ползучесть, а модель Кельвина — Фойгта — релаксацию напряжения.

При снятии нагрузки модель Кельвина постепенно возвращается к первоначальному состоянию, т. е. она обладает упругим последействием, или эластическим восстановлением. Эта модель качественно описывает механическое поведение многих реальных материалов и в том числе мягкой вулканизованной ненаполнен-лой резины. Существенно, что с помощью модели Кельвина нельзя описать релаксацию напряжения.

Итак, в случае (/0/Ад:)2<с1 искомая система нелинейных уравнений, описывающих релаксацию напряжения в полимере

Структурный критерий основан на оценке характера изменения структуры полимера на молекулярном уровне, которое может быть зафиксировано дифракционными методами исследования (рентгенография, электронография). В частности, кристаллизация аморфного полимера — это типичный переход типа «беспорядок -> дальний трехмерный порядок». Структурным критерием возникновения трехмерной упорядоченности служит появление большого количества резких и интенсивных рефлексов на картинах рентгеновского или электронного рассеяния. При этом, однако, следует иметь в виду, что на дифракционных картинах кристаллических полимеров, как правило, число рефлексов, их интенсивность и резкость значительно меньше, чем на картинах низкомолекулярных кристаллических веществ.

Строение можно изучать химическими методами — второе важнейшее положение Бутлерова — также не потеряло своего значения в наши дни. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена А. М. Бутлерова, мы пользуемся методами химического анализа и синтеза. Однако наряду с ними в наше время широко применяются физические методы определения строения — разные виды спектроскопии, ядерный магнитный резонанс, масс-спектрометрия, определение дипольных моментов, рентгенография, электронография. Значение этих методов ныне столь велико, что, дополняя Бутлерова, в наше время мы можем сказать: строение можно изучать химическими и физическими методами.

Определение строения высокомолекулярных веществ и описание их свойств долгое время затруднялись невозможностью выделения их методами классической органической химии в химически чистом состоянии и нахождении их точных физических констант (температуры плавления, температуры кипения, молекулярной массы). На основе же данных элементного анализа можно было определить лишь состав вещества, но не его строение. Изучение строения и свойств высокомолекулярных соединений стало возможным только с развитием физической химии и появлением таких методов исследования, как рентгенография, электронография и другие физические методы. Были созданы также специальные методы определения молекулярной массы, формы и строения гигантских молекул, неизвестных в классической химии.

В настоящее время при изучении строения органических веществ все большее значение приобретают многочисленные физические методы исследования органических веществ: рентгенография, электронография, спектроскопия и многие другие.

Наиболее важными методами изучения структуры полимеров являются рентгенография (электронография) и электронная микроскопия. Большое значение имеют методы двойного лучепреломления и определения плотности полимеров.

Это обусловливает необходимость создания и внедрения методов контроля качества сырья, материалов и готовых изделий, что является важным условием развития производства полимеров. Качество полимерного материала характеризуется совокупностью ^его свойств, определяющих пригодность материала для использования в тех или иных целях. Современный'уровень экспериментальной техники позволяет описать свойства материала на всех уровнях: атомно-молекулярном (фотоэлектронная, рентгеновская, электронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т.д.); надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, аннигиляция позитронов, рассеяние синхротронного излучения и т.д.); макроскопическом (вязкость, прочность, удлинение при разрыве, сопротивление изгибу, электрическому пробою и т.д.).

Надмолекулярная структура в значительной мере определяет механические свойства полимерных материалов. Наиболее важными методами изучения процессов кристаллизации и ориентации в полимерах являются рентгенография (электронография), электронная микроскопия, методы двойного лучепреломления и определения плотности и удельного объема полимеров. При измерении степени кристалличности наряду с рентгенографией применяют спектроскопию ЯМР и ПК с нарушенным полным внутренним отражением.

Обнаружение функциональных групп в молекуле ранее неизвестного соединения также не представляет в настоящее время принципиальных трудностей. Значительно сложнее, однако, получить информацию о строении углеродного скелета. Для этого следует провести химическую деструкцию соединения и идентифицировать образующиеся осколки. Так, озонирование и последующее разложение образующихся озонидов позволяет определить положение кратной связи у большого числа алкенов. В качестве других примеров подобного рода следует упомянуть химическую деградацию альдоз (см. раздел. 3.1.1) или деструкцию алкалоидов (см. раздел 2.3.4). Однако химические методы зачастую требуют очень много времени и на их осуществление необходимы относительно большие количества вещества. В связи с интенсивным развитием приборной техники за последние 20 лет получил широкое распространение целый ряд спектральных методов определения строения органических соединений, такие как инфракрасная спектроскопия (ИК), раман-спектроскония, электронная спектроскопия (УФ- и видимая .области), спектроскопия ядерного магнитного резонанса (ЯМР), спектроскопия электронного парамагнитного резонанса (ЭПР), масс-спектрометрия (МС), рентгенография, электронография и т.д. Эти методы часто в4значительно более короткие сроки позволяют получить информацию о структуре и пространственном строении молекулы. Их распространение зачастую сдерживается лишь весьма высокой стоимостью приборов. В рамках настоящего учебника будут обсуждены основы важнейших из этих методов, и на некоторых примерах будет продемонстрирована получаемая с их помощью информация. Более глубоко с этим вопросом можно познакомиться в специальной литературе.

Наиболее важными методами изучения структуры полимеров являются рентгенография (электронография) и электронная микроскопия. Большое значение имеют методы двойного лучепреломления и определения плотности полимеров.

Долгое время для выяснения физической структуры полимеров пользовались только косвенными методами (рентгенография, электронография и т. д.). За последние годы достигнуты значительные успехи в этой области благодаря развитию метода электронной микроскопии [27], позволяющего непосредственно проследить весь процесс структурообразования от наблюдения формы отдельных молекул и простейших видов агрегации до образования сложных надмолекулярных структур.

Долгое время для выяснения физической структуры полимеров пользовались только косвенными методами (рентгенография, электронография и т. д.). За последние годы достигнуты значительные успехи в этой области благодаря развитию метода электронной микроскопии [27], позволяющего непосредственно проследить весь процесс структурообразования от наблюдения формы отдельных молекул и простейших видов агрегации до образования сложных надмолекулярных структур.

Таким образом, кристаллические полимеры являются системами, в которых фазовое состояние не определяется расположением одних только малых структурных элементов (звеньев) или расположением одних только больших структурных элементов (цепей). Поэтому структурные методы исследования (например, рентгенография, электронография), дающие оценку упорядоченности малых структурных элементов, и оптические методы, дающие оценку упорядоченности больших структурных элементов (большие отрезки цепей), не могут быть порознь достаточны для всесторонней характеристики фазового состояния кристаллического полимера (хотя могут быть достаточными для доказательства отсутствия кристаллического состояния). Итак, неразрывно связанные для низкомолекулярных тел термодинамические и структурные критерии фазового состояния в случае полимеров расходятся. Это расхождение и является причиной множества недоразумений, возникших при трактовке результатов структурных исследований полимеров.




Рекомендуют использовать Ректификации бутадиена Ректификационной установки Рекуперативного теплообменника Релаксацией напряжения Релаксации процессов Релаксации уменьшается Релаксационных процессах Релаксационным переходам

-
Яндекс.Метрика