![]() |
|
Главная --> Справочник терминов Совместной полимеризации 1. Совместной полимеризацией нескольких ненасыщенных мономеров (стр. 117 и ел.). Полиметилметакрилат имеет ряд недостатков; низкую поверхностную твердость, низкую температуру стеклования (около 115°), малую текучесть в размягченном состоянии. Эти недостатки можно устранить совместной полимеризацией метилметакрилата с некоторыми ненасыщенными соединениями. Метилметакрилат легко образует сополимеры с многими винильными мономерами, поэтому свойства полимера можно модифицировать, изменяя соотношение звеньев различных мономеров в макромолекулах сополимера. Совместная полимеризация метилметакрилата с полярными мономерами позволяет получить сополимер с большей поверхностной твердостью к более высокой температурой стеклования, чем для полиметилмет-акрплата. Органические стекла с повышенной абразишстойкостью и теплостойкостью получаются совместной полимеризацией метилметакрилата с метил-а-хлоракрилатом, метакриловой кислотой, акрилонитрилом. С повышением содержания полярного компонента в сополимере увеличивается его твердость и теплостойкость, но одновременно с этим уменьшается упругость при низкой температуре и текучесть в размягченном состоянии. Соли метакриловой кислоты окрашены в цвет, характерный для данного солеобразу-ющего катиона. Поэтому применение солей метакриловой кислоты в качестве компонентов при совместной полимеризации с мет-акрилатом дает возможность получать светостойкие окрашенные стекла. Так, совместной полимеризацией метилметакрилата и триалкил-силанметакрилата получены твердые стекловидные сополимеры следующего строения: Бутадиен-нитрильные каучуки (СКН) получаются совместной полимеризацией бутадиена-1,3 и акрилонитрила СН2 = СН — CN. Состоит в основном из продуктов 1,4-присоеди-нения. Сополимеризация — процесс образования сополимеров совместной полимеризацией двух или нескольких различных по природе мономеров. Этим методом получают высокомолекулярные соединения с широким диапазоном физических и химических свойств. Например, в результате сополимеризации бутадена с акрилонитри-лом образуется бутадиеннитрильный каучук (СКН), обладающий высокой стойкостью к маслам и бензинам. Из него изготовляют уп-лотнительные прокладки для деталей, соприкасающихся с маслами и растворителями: Если в полимеризации участвуют два мономера или более, то процесс называют сополимеризацией (совместной полимеризацией) , а продукты полимеризации — сополимерами. В состав сополимера входят различные мономерные звенья — соответственно числу мономеров. Сополимеризация позволяет широко варьировать свойства получаемых полимеров. При сополимеризации двух мономеров А и 'В процесс в общем виде может быть представлен схемой Сополимерные каучуки. Так называются каучуки, получаемые совместной полимеризацией (стр. 458) диеновых соединений и соединений этиленового ряда. Среди сополимерных каучуков наибольшее значение имеют бутадиен-стирольные, бутадиен-нитрильные и изобутилен-изопреновые каучуки. Бутилкаучук получают совместной полимеризацией небольших количеств изопрена (1—5%) с изобутиленом (95—99%). Процесс ведут при минус 100° С в жидком этилене (стр. 68) поддей-ствием катализаторов А1С13 или BF3. Реакция протекает очень быстро. Полиалкиленсульфоны получают также совместной полимеризацией двуокиси серы с этиленом или его производными. Индуцируемая радикалами полимеризация простейших алке-нов, например этилена и пропилена, протекает с трудом и требует экстремальных условий; многие же замещенные алкены по-лимеризуются довольно легко. К ним относятся, в частности, такие соединения, как СН2=СНС1 (полимеризация этого соединения дает поливинилхлорид, используемый для изготовления гибких прозрачных трубок и многих других изделий), PhCH = CH2 (из которого получают полистирол), CF2=CF2 (из которого получают тефлон — полимер, обладающий исключительно низким коэффициентом трения, необычайно высокой химической стойкостью, а также многими другими полезны-ми свойствами) и др. Совместной полимеризацией двух различных типов мономеров, каждый из которых включается в молекулу полимера, можно получать полимеры с заранее заданными свойствами. При полимеризации происходит соединение одинаковых молекул без выделения простых молекул, и образующийся полимер имеет молекулярный вес, равный сумме молекулярных весов реагирующих молекул. Если в образовании полимера участвует два или несколько различных веществ, то такая полимеризация называется совместной полимеризацией или сополимери-зацией При совместной полимеризации бутадиена и стирола в среде алифатических, циклоалифатических и ароматических углеводородов на литийорганических катализаторах независимо от соотношения мономеров, концентрации катализатора и температуры в первую очередь полимеризуется бутадиен. Лишь после того как израсходуется основное количество бутадиена, в реакцию вступает стирол [6]. При полимеризации хлоропрена применяются два типа регуляторов, принципиально отличающиеся по механизму действия: сера в сочетании с тетраэтилтиурамдисульфидом (ТЭТД) и меркаптаны. Сера непосредственно участвует в процессе совместной полимеризации с хлоропреном с образованием фрагментов поли-хлоропрена, связанных между собой ди- и полисульфидными связями. Это было установлено [22] на основании данных анализа узких фракций полимеров хлоропрена, полученных с применением меченых атомов серы. Бутадиен. Бутадиен является основным мономером для получения синтетических каучуков. Путем полимеризации бутадиена получают бутадиеновый каучук, который в зависимости от условий полимеризации выпускают различных марок. В последнее время большое внимание уделяется получению сополимерных видов синтетических каучуков. При полимеризации бутадиена со стиролом получается бутадиен-стирольный каучук. После добавки наполнителей и вулканизации получается каучук, по свойствам близкий к натуральному. Бутадиен используется также в качестве сырья для производства бутадиен-нитрильного каучука. Сополимер бутадиена и акрилонитрила устойчив к действию высоких температур и масла. Ценными свойствами обладает также бутилкаучук, получаемый путем совместной полимеризации бутадиена с изопреном. На базе ацетилена могут быть получены ценные хлороргани-ческие продукты. Присоединением к нему хлористого водорода в присутствии катализаторов можно вырабатывать винихлорид. Последний может получаться без предварительного выделения ацетилена из газов пиролиза [205]. За рубежом этому процессу уделяется большое внимание. Винилхлорид перерабатывается в по-ливинилхлоридные смолы и сополимеры для получения пластмасс, искусственного волокна, заменителей кожи и т. д. Путем совместной полимеризации винилхлорида и винилиденхлорида образуется волокно совиден (саран). Из поливинилхлоридной Бутадиен. Бутадиен является основным мономером для получения синтетических каучуков. Путем полимеризации бутадиена получают бутадиеновый каучук, который в зависимости от усло-ний полимеризации выпускают различных марок. В последнее нремя большое внимание уделяется получению сополимерных видов синтетических каучуков. При полимеризации бутадиена со стиролом получается бутадиен-стирольный каучук. После добавки наполнителей и вулканизации получается каучук, по свойствам близкий к натуральному. Бутадиен используется также и качестве сырья для производства бутадиен-нитрильного каучука. Сополимер бутадиена и акрилонитрила устойчив к действию высоких температур и масла. Цепными свойствами обладает также бутилкаучук, получаемый путем совместной полимеризации бутадиена с изопреном. На базе ацетилена MOI\VT быть получены ценные хлороргани-ческие продукты. Присоединением к нему хлористого водорода в присутствии катализаторов можно вырабатывать випихлорид. Последний может получаться без предварительного выделения ацетилена из газов пиролиза [2051. За рубежом этому процессу уделяется большое внимание. Випилхлорид перерабатывается в по-ливинилхлоридные смолы и сополимеры для получения пластмасс, искусственного волокна, заменителей кожи и т. д. Путем совместной полимеризации випилхлорида и винилиденхлорида образуется волокно совидон (сараи). Из поливипилхлоридной Увеличение жесткости структуры макромолекул достигается путем совместной полимеризации более полярным компонентом, температуры стеклования Рост макрорадикалов в смеси мои о м е р о в (при совместной полимеризации). Если образование начальных радикалов происходит в смеси мономеров, то в росте цепи принимают участие молекулы всех присутствующих мономеров. Состав макромолекулы получаемого сополимера и распределение в ней звеньев различных мономеров определяются относительной активностью мономеров и макрорадикалов, принимающих участие в сополимеризации. В некоторых смесях мономеры присоединяются преимущественно к радикалам, имеющим одинаковое химическое строение с мономерами. Поэтому, несмотря на присутствие другого мономера и его свободных радикалов, образуются в основном макромолекулы из одинаковых по химиче-скому составу звеньев, т. е. гомополимеры. Реакционная способность мономера в процессе совместной полимеризации, как и в случае гомополимеризации, зависит от строения мономера. Сопряжение двойной связи в молекуле мономера, количество и взаимное расположение заместителей, их поляризующее влияние на двойную связь определяют участие данных мономеров в реакции сополимеризации. Ряды активностей, составленные по результатам изучения совместной полимеризации мономеров и по данным изучения их гомополимеризации совпадают: При совместной полимеризации мономеров, один из которых содержит заместитель R, повышающий электронную плотность около двойной спязи, т. е. нуклесфильную группу, а второй мономер—заместитель X, снижающий электронную плотность, т. е. электрофильную группу ходе реакции изменяется состав вновь образующихся фракций сополимера. Следовательно, отдельные фракции сополимеров отличаются не только по длине и строению макромолекул, но и по соотношению в них мономерных звеньев и порядку их чередования. Изменение состава смеси мономеров в процессе совместной полимеризации отражается также на скорости реакции. Во многих случаях по мере обогащения смеси менее активным компонентом скорость совместной полимеризации уменьшается. ![]() Содержания функциональных Содержания метилового Селективность катализатора Содержания последнего Содержания стеклянного Содержанием активного Содержанием гидроксильных Содержанием основного Содержанием сероводорода |
- |