Главная --> Справочник терминов


Способных связывать Иная картина наблюдается в том случае, когда применение избытка одного из мономеров приводит к образованию однотипных функциональных групп, способных реагировать между собой. Так, в процессе получения высокомолекулярных полисульфидных полимеров (тиоколов) один из мономеров (тетрасульфид натрия)

Термостойкие полиамиды заданного молекулярного веса получаются поликонденсацией в присутствии стабилизаторов, способных реагировать с кон-

Циановая кислота является одной из простейших кислот, способных реагировать в двух таутомерных формах. Ей соответствуют следующие формулы:

Иначе протекает реакция ноликондепсации соединений, содержащих более двух функциональных групп, способных реагировать между собой. В результате поликонденсации таких веществ количество функциональных групп в молекуле на каждой ступени реакции все возрастает, вследствие чего полимер постепенно приобретает пространственное строение. Такой процесс получил название пространственной поликонденсации.

Неограниченные возможности создания разнообразных поли меров открывает поликонденсация двух различных низкомолекх лярных соединений, каждое из которых содержит несколько одно гипных функциональных групп, способных реагировать с функциональными группами другого соединения.

Надежность синтетического метода не только предполагает, что данный метод может использоваться для эффективного осуществления требуемого превращения, но и подразумевает, что в избранных условиях между данной функциональной группой и реагентом протекает одна и только одна реакция. Тем не менее, этим проблема селективности далеко не исчерпывается. Дело в •п)м, что реальный субстрат может содержать несколько одинаковых или близких по свойствам функциональных групп, способных реагировать с одним и тем же реагентом, а по условиям задачи требуется провести превращение с одной из них. Кроме того, даже при наличии всего лишь одной функциональной группы, ее превращение с использованием «чистой» (т.е. надежной) реакции может приводить к образованию нескольких изомерных продуктов. '• Характер проблем, связанных с селективностью, может быть весьма различен. Ниже мы рассмотрим некоторые типичные случаи, с которыми чаще всего приходится иметь дело в рамках решения задач обеспечения селективности тех или иных превращений. Если взглянуть на проблему селективности с точки зрения кинетики, то можно выделить три общих типа случаев, в каждом из которых возможно образование более, чем одного продукта в условиях данной реакции.

Возникшие при разрыве свободные радикалы способны к самым разнообразным реакциям (стр 39), которые могут приводить к образованию полимеров разветвленного и даже пространственного строения Вследствие большой вязкое in полимеров вероятность столкновения радикалов, способных реагировать друг с другом, мала. Поэтому при однократной деформации процесс структурирования полимера протекает Сравнительно медленно^ Многократкая деформация образца повышает вероятность столкновения радикалов, что вызывает ускоренное структурирование. Таким образом, чтобы предотвратить утомление полимерных материалов, необходимо создать условия, при которых было бы невозможно образование свободных радикалов

Надежность синтетического метода не только предполагает, что данный метод может использоваться для эффективного осуществления требуемого превращения, но и подразумевает, что в избранных условиях между данной функциональной группой и реагентом протекает одна и только одна реакция. Тем не менее, этим проблема селективности далеко не исчерпывается. Дело в •гём, что реальный субстрат может содержать несколько одинаковых или близких по свойствам функциональных групп, способных реагировать с одним и тем же реагентом, а по условиям задачи требуется провести превращение с одной из них, Кроме того, даже при наличии всего лишь одной функциональной группы, ее превращение с использованием «чистой» (т.е. надежной) реакции может приводить к образованию нескольких изомерных продуктов. '' Характер проблем, связанных с селективностью, может быть весьма различен. Ниже мы рассмотрим некоторые типичные случаи, с которыми чаще Всего приходится иметь дело в рамках решения задач обеспечения селективности тех или иных превращений. Если взглянуть на проблему селективно-сЧги с точки зрения кинетики, то можно выделить три общих типа случаев, в каждом из которых возможно образование более, чем одного продукта в условиях данной реакции.

Ионы'арилдиазопия образуются при диазотировании ароматических аминов. Они устойчивы в растворе только при температуре, близкой к комнатной нли ниже, что дополнительно ограничивает диапазон соединений, способных реагировать с ионами диазония. Механизм образования нона диазония обсуждается более подробно в книге 2 (со. разд. 7.4.1).

В виду ограниченности числа ароматических соединений, способных реагировать с ионами диазония, нет данных tid селективности, сравнимые с данными, обсуждавшимися для других реакций электрофнль-ного замещения. По-видимому, диазотирование, поскольку в нем участвует слабый электрофил, должно обладать и высокой субстратной селективностью, и селективностью направления атаки.

Можно ожидать, что присутствие групп, способных реагировать с диазометаном, как, например, фенольный гидро-ксил, альдегидная группа, активная метнленовая группа

ными белковыми веществами в неактивную форму. ЕСЛИ же эти металлы присутствуют в активной форме, то они проявляют функции катализаторов окисления каучука и оказывают существенное влияние не только на его стабильность, но и на эксплуатационные показатели изделий на его основе. Синтетические каучуки не содержат в своем составе белковых веществ или других агентов, способных связывать примеси металлов переменной валентности в неактивную форму, а потому вопрос регламентирования содержания в них этих примесей приобретает более важное значение, чем для натурального каучука. Как правило, для синтетических каучуков предельно допустимые нормы содержания примесей металлов переменной валентности более жесткие, чем для натурального каучука.

Каталитическая активность металлов переменной валентности в процессах окисления и старения синтетических каучуков зависит от следующих факторов: природы металла переменной валентности; валентного состояния металла; химической структуры каучука; содержания металла переменной валентности; природы ан-тиокснданта, применяемого для стабилизации каучука; наличия в каучуке веществ, способных связывать металлы переменной валентности в соединения (комплексы или хелаты), которые являются неактивными в процессах окисления или других превращениях каучуков.

Удаление волы л;. >егк л/юнной массы производится путем отгонки (чаще всего с пег оком паров сульфируемого продукта) либо химическими способам :i—г.ри помощи веществ, способных связывать воду. Например, при большом избытке сульфируемого продукта, не гмеолив^олдтсся с серной кислотой и растворяющего образующиеся су.г.ьфо^.ислочы, можно отделять продукты сульфирования от cepiioi': кислоты путем отстаивания и проводить процесс с теоретическим расходом сульфирующего агента (экстракционный метод сульфирования).

Молекулы бензола и его производных содержат секстет я-элект-ронов, способных связывать электрофильные реагенты (D®,

а также и от условий опыта. Обычно очень трудно получить при алкилировании только одно из возможных производных амина и поэтому продукт реакции, как правило, представляет собой смесь вторичного и третичного аминов наряду с значительным количеством непрореагировавшего первичного амина, а часто с примесью некоторого количества соли четвертичного аммониевого основания. Получение сложной смеси при применении галоидного алкила является результатом образования при реакции галоидоводорода, который дает соли с находящимися в реакционной смеси аминами. Распределение галоидоводорода между аминами зависит от их относительной основности, их сравнительного количества, а также от .растворимости солей аминов в реакционной смеси. При алкилировании ароматических аминов выделяющийся осадок обычно содержит значительное количество соли исходного амина, а в растворе остается алкилированный амин, который вступает в дальнейшую реакцию с галоидным алкилом. Такие затруднения могут быть преодолены, по крайней мере, до известной степени проведением алкилирования в присутствии веществ, способных связывать образующийся галоидозодород, например, углекислой или двууглекислой соли щелочного металла.

способных связывать хлористый водород. Известен также метод получе-

аминогрупп, способных связывать диффундирующие

Соотношение ферроцен : хлористый алюминий не должно быть меньше 1 : 2, но увеличение избытка хлористого алюминия не повышает выхода. В случае групп, способных связывать А1С13 (COCII3, CN), количество А1С13 увеличивалось. Ароматическое соединение почти везде бралось в избытке. В случае твердых аренов растворителем служил декалин. В исследуемой реакции А1С13 может быть заменен на А1Вг3, но SnClj, TiC]4 и ВГ3.О(С2НБ)2 неактивны.

а также и от условий опыта. Обычно очень трудно получить при алкилировании только одно из возможных производных амина и поэтому продукт реакции, как правило, представляет собой смесь вторичного и третичного аминов наряду с значительным количеством непрореагировавшего первичного амина, а часто с примесью некоторого количества соли четвертичного аммониевого основания. Получение сложной смеси при применении галоидного алкила является результатом образования при реакции галоидоводорода, который дает соли с находящимися в реакционной смеси аминами. Распределение галоидоводорода между аминами зависит от их относительной основности, их сравнительного количества, а также от .растворимости солей аминов в реакционной смеси. При алкилировании ароматических аминов выделяющийся осадок обычно содержит значительное количество соли исходного амина, а в растворе остается алкилированный амин, который вступает в дальнейшую реакцию с галоидным алкилом. Такие затруднения могут быть преодолены, по крайней мере, до известной степени проведением алкилирования в присутствии веществ, способных связывать образующийся галоидозодород, например углекислой или двууглекислой соли щелочного металла.

а также и от условий опыта. Обычно очень трудно получить при алкилировании только одно из возможных производных амина и поэтому продукт реакции, как правило, представляет собой смесь вторичного и третичного аминов наряду с значительным количеством непрореагировавшего первичного амина, а часто с примесью некоторого количества соли четвертичного аммониевого основания. Получение сложной смеси при применении галоидного алкила является результатом образования при реакции галоидоводорода, который дает соли с находящимися в реакционной смеси аминами. Распределение галоидоводорода между аминами зависит от их относительной основности, их сравнительного количества, а также от .растворимости солей аминов в реакционной смеси. При алкилировании ароматических аминов выделяющийся осадок обычно содержит значительное количество соли исходного амина, а в растворе остается алкилированный амин, который вступает в дальнейшую реакцию с галоидным алкилом. Такие затруднения могут быть преодолены, по крайней мере, до известной степени проведением алкилирования в присутствии веществ, способных связывать образующийся галоидозодород, например^ углекислой или двууглекислой соли щелочного металла.

В отличие от белковых волокон в полиамидном волокне число аминогрупп, способных связывать кислотные красители, невелико и зависит от условий получения полимера. Максимальное поглощение кислотных красителей этим волокном составляет 0,04—0,06 моль/кг. Влияние рН красильной ванны на поглощение кислотных красителей полиамидным волокном показано на рис. 17. Как можно видеть, при изменении рН от 8,0 до 5,0 поглощение красителя повышается в результате непрерывного роста числа положительно заряженных аминогрупп в волокне. В интервале рН 5,0—2,0 количество связанного волокном красителя остается постоянным и составляет 0,04—0,06 моль/кг, т. е. соответствует максимальному числу аминогрупп в полимере, способных взаимодействовать с красителем. При рН<2,7 поглощение красителя из ванны резко повышается. Это может




Соединений алюминиевого Соединений бензольного Соединений действием Соединений двуокисью Соединений химические Сепаратора поступает Соединений макроциклических Соединений нафталинового Соединений некоторых

-
Яндекс.Метрика