Главная --> Справочник терминов


Способность образовывать Крашение шерсти напоминает процессы, протекающие в ионообменных смолах. Кератин шерсти, образующий за счет остатков цистина сетчатую структуру, является цвиттерионом. В качестве «основания» он обладает эквивалентным весом 1200 и окрашивается в уксуснокислом растворе красителями, имеющими кислотные группы. В результате двойного обмена «соля шерсти» с натриевой солью сульфо-кислотного красителя последний связывается в виде соли и в процессе крашения примерно при 90° медленно диффундирует в шерстяное волокно. Небольшие молекулы красителя, например моноазосоединения или производные аминоантрахинона с одной сульфогруппой в молекуле, дают очень ровные выкраски по шерсти; соединения с двумя сульфо-группами закрепляются сильнее и поэтому более прочны к стирке (суп-раноловые или полярные красители), но зато дают менее ровные выкраски. Большое значение для крашения шерсти имеет, кроме того, способность некоторых красителей (см. стр. 608) образовывать с солями хрома комплексные соединения, очень прочные к стирке и свету.

Размер цикла и связанное с ним наличие различных видов напряжения (влияют на реакционную способность некоторых функциональных производных полиметиленовых углеводородов. Например, циклобутанон и циклогексанон более активны в ре-

Таблица 15.1. Относительная реакционная способность некоторых олефинов в реакции с бромом в уксусной кислоте при 24°С [56]

Таблица 15.2. Относительная реакционная способность некоторых олефинов в реакции с бромом в метаноле (56]

Способность некоторых органических ве* ществ вращать плоскость поляризации светового луча была на-

В исследованиях несколько иного плана было обнаружено еще более интересное физическое свойство органических соединений, а именно способность некоторых органических веществ служить сверхпроводниками. Так, например, комплексы с переносом заряда тетратиафульвалена (81) и тетрацианохи-нодиметана (82) состава 1:1 (схема 1.24) способны не только проявлять свойства металлических проводников при комнатной температуре, но и становятся сверхпроводниками при низких температурах. Синтезированы и изучены многочисленные соединения этого и сходных типов. Среди них особенно интересными оказались комплексы с переносом заряда, полученные избис(эти-лендитио)тетратиафульвалена и неорганических анионов. Некоторые из этих комплексов обнаруживали сверхпроводящие свойства при температуре 10,4 К,

Каталитическое гидрирование хорошо изучено. Общие вопросы рассмотрены в работе [49], гидрирование при высоком давлении в статье [50], а гидрирование при низком давлении — в работах 151, 52]. Преимущества каталитического гидрирования как метода получения спиртов состоят в следующем: простота процесса, чистота получаемых продуктов и часто количественное протекание реакции. Недостатками является неспецифичность реакции" (восстанавливаются также и олефины), легкость отравления катализатора и способность некоторых спиртов, например бензиловых, и фенилто-зилатов путем гидрогенолиза превращаться в углеводороды [53].

В исследованиях несколько иного плана было обнаружено еще более интересное физическое свойство органических соединений, а именно способность некоторых органических веществ служить сверхпроводниками. Так, например, комплексы с переносом заряда тетратиафульвалена (81) и тетрацианохи-Нодиметана (82) состава 1:1 (схема 1.24) способны не только проявлять свойства металлических проводников при комнатной температуре, но и становятся сверхпроводниками при низких температурах. Синтезированы и изучены многочисленные соединения этого и сходных типов. Среди них особенно интересными оказались комплексы с переносом заряда, полученные из бис(эти -лендитио)тетратиафульвалена и неорганических анионов. Некоторые из этих комплексов обнаруживали сверхпроводящие свойства при температуре 10,4 К.

Реакционная способность некоторых ариламинов в реакции Бухерера (12)

Способность некоторых а, ^-ненасыщенных карбонильных и карбоксильных соединений к таутомерии с образованием Рл-не* насыщенных форм при взаимодействии с акрилонитрилом увеличивается. Например, из окиси мезитила получаются моно- и бис-аддукты [302, 303] (ср. [791]). Формула бис-аддукта XXIX была установлена путем расщепления. Для моноаддукта Брусон и Ринер предложили строение a, fS-ненасыщенного соединения

р-лактамов, приготовленных указанным метолом, было синтезировано из димстил-[1, 13, 14] или дифенилкетена [1, 12, 15], по-видимому, легко вступающих в реакцию с основаниями Шиффа, полученными из ароматических альдегидов или кетонов и ароматических аминов. В числе других кетенов, использованных в этом синтезе в качестве исходных соединений, можно указать на диэтилкетен [16], этмлкарбэтоксикетен [1, 17], фенилкарбо-метоксикетен [17], мстилфенилкетен [1], й,2-би фенил енкстсн [1] и сам кстен [17]. Относительную реакционную способность некоторых из указанных выше кетенов по отношению к бснзофенои-анилу определил Штаудингер, расположивший эти кетсмы в следующий ряд:

Предположения сводятся к тому, что экстрагент — донор электронов — тем эффективнее, чем выше электронная плотность на функциональном атоме и чем слабее этот атом связан с остальной частью молекулы, ибо тогда выше его способность образовывать координационную связь. Например, в настоящее время принято, что экстракционная способность фос-форорганических экстрагентов определяется донорными свойствами группы Р=О, т. е. электронной плотностью на атоме кислорода [63]. Установлено наличие корреляции экстракционной способности с полярностью связи Р=О для ряда фосфорорганических соединений [64], а также с электроотрицательностью групп-заместителей, входящих в состав фосфорорганических соединений, аминов и органических кислот [60, 61]. Ответственной за экстракционную способность, считается энергия связи Р=О, которая определяет длину связи, следовательно, и электронную плотность на атоме кислорода, частоту колебаний Р=О связи в ИК-спектре и полярность

11.43. Способна ли сахароза к таутомерии? Проявляет ли мутаротацию? В чем сходство и в чем различие сахарозы сравнительно с мальтозой в следующих химических свойствах: 1) отношение к гидролизу; 2) отношение к окислению реактивом Фелинга или аммиачным раствором оксида серебра; 3) образование гликозидов при действии спиртов в присутствии НС1; 4) способность образовывать простые и сложные эфиры.

нения обычно трех видов: двух- и трехкомпонентные комплексы галогенидов переходных металлов с алкилпроизводными алюминия и других металлов (катализаторы Циглера — Натта); л-аллильные комплексы: переходных металлов; оксиднохромовые катализаторы. Общей их особенностью является способность образовывать в углеводородных средах сравнительно стабильные комплексы с мономером, причем молекула мономера в комплексе поляризуется или занимает строго определенное положение, если она уже имеет диполь. После этого происходит гетеролитический разрыв л-связи мономерных молекул, подобно тому, как при координации мономеров у алкил-литиевых катализаторов.

Общий подход к рассмотрению свойств высокомолекулярных соединений оказывается возможным потому, что многие их особенности зависят больше от формы макромолекул, чем от их химической природы. Так, характерные особенности линейных полимеров — способность образовывать прочные волокна и пленки, значительная эластичность, способность растворяться, а при повышении температуры плавиться. Типичные представители линейных полимеров — это каучук и его синтетические аналоги, полиамиды, полиоле-фины.

Первую задачу, которую предстоит решить исследователю, интересующемуся, почему оба вещества отличны друг от друга, можно сформулировать так: какова природа наблюдаемой изомерии? Ответом в нашем случае служат экспериментальные доказательства того, что фумаровая и малеино-вая кислоты имеют одинаковое химическое строение. На это указывают такие их свойства, как способность образовывать соли с двумя эквивалентами одновалентных ионов металлов (так доказывается, что обе кислоты двухосновны, т. е. в их составе имеются две карбоксильных группы), присоединять молекулу брома (доказательство присутствия двойной углерод-углеродной связи), превращаться при гидроксилировании в винную кислоту. Эти и другие химические превращения указывают, что обеим кислотам принадлежит одна и та же структурная формула НООС—СН = СН—СООН. С другой стороны, известно, что замещенные этилена типа RR'C — CRR" способны существовать в виде двух пространственных изомеров, называемых цис- и транс-формами. Таким образом, есть все основания считать, что фумаровая и малеиновая кислоты— цис-транс-нзомеры. Задача определения конфигурации сводится, следовательно, к тому, чтобы выяснить, какая из кислот имеет цис-, а какая транс-конфигурацию.

Богатейшим источником для разработки методов синтеза циклических структур является химия комплексов переходных металлов, В разд. 2.6,3.4. мы рассмотрим некоторые общие подходы к разработке и использованию таких методов, но один из примеров уместно рассмотреть в контексте обсуждаемого здесь материала. На схеме 2.111 показано образование метилснцикло-пентана 297 в результате реакции эфира акриловой кислоты с бифункциональным реагентом 298. Идея этого синтеза предполагала, что реагент 298 может служить эквивалентом биполярного иона 298а, так называемого три-метиленметана, взаимодействие которого с а,р-нелредельными карбонильными производными по схеме реакции Михаэля должно приводить к требуемому результату. Было также очевидно, что главная проблема в таком подходе связана с крайней нестабильностью 298а, что исключало возможность применения каких-либо из обычных методов генерации ионных интсрмеди-атов. Однако эту проблему удатось решить благодаря использованию в качестве катализаторов этой реакции комплексов Pd(0), для которых была известна способность образовывать комплексы с различными лигандами аллиль-ного типа. Действительно, было найдено, что в присутствии таких комплексов можно проводить реакции 298 с самыми различными акцепторами Михаэля по схеме, показанной на примере синтеза 297 [29i].

Функционально-ориентированный дизайн решает задачу синтеза соединений, которые должны обладать набором четко определенных, заранее заданных свойств. Здесь конечная цель состоит в оптимизации структуры целевого соединения с тем, чтобы добиться максимальной эффективности в выполнении им требуемой функции. Это могут быть такие важные физические свойства, как электропроводность {создание органических металлов) или способность образовывать жидкие кристаллы; химические свойства, как, например, каталитическая активность, подобная активности биологических катализаторов (ферментов), или просто определенная реакционная способность, отвечающая тем или иным нуждам синтеза; биологическая активность, в конечном счете направленная на лечение определенных болезней или на борьбу с насекомыми-вредителями. Здесь снова можно сказать, что все это — наиболее обычные задачи, с которыми органическая химия имела дело уже в течение столетия, задолго до появления термина «молекулярный дизайн». Однако традиционный поиск полезных соединений ранее шел в основном методом проб и ошибок, а потому поглощал огромное количество труда и времени на синтез тысяч аналогов, необходимых для нахождения одного из них, отвечающего поставленной задаче. В настоящее время ясно обнаруживается тенденция двигаться в этой области гораздо более экономными путями. Достаточно часто еще в начале подобных проектов теперь применяют разнообразные методы молекулярного моделирования, позволяющее с разумной вероятностью установить тот набор структурных параметров, наличие которых должно обеспечить целевому соединению способность выполнять заданную функцию. Результаты первоначальных экспериментов используют далее для корректировки ис-

Для того чтобы создать рецептор, настроенный на более крупные молекулы субстратов, а не только на простые ароматические соединения, был синтезирован аналог 227, в котором фениленовые остатки в соединениях 226 заменены нафтиленовыми [34с]. В результате этой модификации лиганд 227 получил способность образовывать комплексы с такими крупными молекулами, как стероиды, одновременно с резким снижением его сродства к субстратам меньшего размера. Нам кажется важным подчеркнуть это обстоятельство: при переходе от 226 к 227 увеличение размеров внутренней полости лиганда, его связывающего сайта, — это не просто возрастание объема «контейнера», в который теперь можно заложить вместо одной маленькой молекулы одну большую или несколько маленьких, а именно изменение характера селективности рецептора (в большом «контейнере» прочно удерживаются крупные молекулы, а мелкие из него «вываливаются*). И дело здесь не просто в размерах — видимо, не менее важно и определенное структурное соответствие субстрата рецептору. Так, при варьировании структуры стероидного субстрата константа связывания с рецептором 227 может изменяться в пределах двух-трех порядков величины. Таким образом, этот лиганд может служить эффективным инструментом для избирательного связывания определенных стероидов и выделения их из смесей.

Склонность к полимеризации свойственна многим цианистым соединениям, равно как и способность образовывать двойные соединения. Циановая и роданистоводородная кислоты, циан и цианамид, в значительной степени обнаруживают эту особенность.

Особенность бактерий — их способность образовывать высокоактивную термостойкую а-амилазу, необходимую на стадии подвари-вания замесов и осахаривания сусла для разжижения и декстрини-зации крахмального клейстера.

Богатейшим источником для разработки методов синтеза циклических структур является химия комплексов переходных металлов. В разд. 2.6.3.4. мы рассмотрим некоторые общие подходы к разработке и использованию таких методов, но один из примеров уместно рассмотреть в контексте обсуждаемого здесь материала. На схеме 2.111 показано образование метилснцикло-пентана 297 в результате реакции эфира акриловой кислоты с бифункциональным реагентом 298. Идея этого синтеза предполагав, что реагент 298 может служить эквивалентом биполярного иона 298а, так называемого три-метиленметана, взаимодействие которого с а,р-непредельными карбонильными производными по схеме реакции Михаэля должно приподить к требуемому результату. Было также очевидно, что главная проблема в таком подходе связана с крайней нестабильностью 298а, что исключало возможность применения каких-либо из обычных методов генерации ионных интсрмеди-атов. Однако эту проблему удаюсь решить благодаря использованию в качестве кататизаторов этой реакции комплексов Pd(0), для которых была известна способность образовывать комплексы с различными лигандами аллиль-ного типа. Действительно, было найдено, что в присутствии таких комплексов можно проводить реакции 298 с самыми различными акцепторами Михаэля по схеме, показанной на примере синтеза 297 [291].




Соединений используют Соединений кислородом Соединений наблюдается Соединений называемых Серьезные недостатки Соединений обладающих Соединений образуются Соединений оказывают Соединений окисление

-