Главная --> Справочник терминов


Стабилизации дисперсий латексов, стабилизация синтетических каучуков и латексов, промышленное производство основных мономеров для синтеза каучуков.

Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя (^-потенциал для большинства латексов равен 100 -=-60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора.

Синтетические каучуки очень редко применяются для изготовления изделий без дополнительной переработки и проведения специфических химических превращений (в первую очередь — вулканизации под влиянием различных агентов). При их стабилизации необходимо решать более узкие задачи, чем при стабилизации таких полимерных материалов, как резины, пластмассы и синтетические волокна. Стабилизация каучуков должна обеспечить сохранение их свойств на стадии получения и первичной переработки и при длительном складском хранении. В связи с этим для синтетических каучуков нет необходимости применять светостабилизаторы, антиозонанты, антирады, противоутомители. Эти стабилизаторы обычно вводят в каучук на заводах, перерабатывающих его в изделия, и необходимость их применения обусловлена спецификой эксплуатации этих изделий. Это обстоятельство, на первый взгляд, позволяет сделать вывод о меньшей сложности

4. Фойгт И. Стабилизация синтетических полимеров против действия света и тепла. Л., «Химия», 1972. 544 с.

Раздел VI. СТАБИЛИЗАЦИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ

К. Б. Пиотровский Глава 30 Стабилизация синтетических каучуков 618

1. П ii от р о в с к и и К- Б., Тарасова 3. Н. Старение и стабилизация синтетических каучуков и вулканизатов. М., 1980. 264 с.

21. Пиотровский К. Б., Тарасова 3. Н. Старение и стабилизация синтетических каучуков и вулканизатов. — М.: Химия, 1980.

Гордон Г. Я. Стабилизация синтетических полимеров. М., Госхимиздат, 1963. 299 с.

Фойгт И. Стабилизация синтетических полимеров против действия света и тепла. Л., «Химия», 1972. 544 с.

59. Ф о и г т И. Стабилизация синтетических полимеров против действия света и тепла. Изд-во «Химия», 1972.

Качество стабилизации дисперсий ПВА

Качество стабилизации дисперсий ПВА определяется «совершенством» пространст-

Для разрешения противоречий, возникающих при сопоставлении изотерм адсорбции и вычисленных из них толщин слоев, следует подробно рассмотреть вопрос о структуре адсорбционного слоя. Этот вопрос важен также с точки зрения понимания механизма процессов, происходящих на границе раздела с твердым телом в наполненных, армированных полимерных системах и других гетерогенных полимерных материалах. Действительно, адсорбция полимера есть первая стадия образования связи между полимером и твердой поверхностью при склеивании, нанесении покрытий, стабилизации дисперсий и т. п.

шению агрегатов и стабилизации дисперсий Однако она же и затрудняет смачивание поверхности частиц При повышении температуры облегчается образование поверхностных слоев и ускоряется установление адсорбционного равновесия

среде. Схема такой модели приведена на рис. 1. Модель создана на основе тех же самых представлений, которые приводились [12] при обсуждении механизма стабилизации полимерных масло-масляных эмульсий БП-сополимерами, но в применении к проблемдм стабилизации дисперсий твердых частиц в органических средах. Ранее аналогичные соображения позволили объяснить образование при определенных условиях мицелл бутадиен-стирольных блоксопо-лимеров в органических средах [15].

Улучшение диспергируемости частиц двуокиси титана при покрытии их жирными кислотами, вероятно, связано главным образом с повышением смачиваемости поверхности частиц органической средой. В дополнение к этому в стабилизацию дисперсий вносит определенный вклад «энтропийное отталкивание». Идея объяснения стабилизации дисперсий эффектом «энтропийного отталкивания» принадлежит Мэкору [6]. Она была распространена на низкомолекулярные углеводороды с помощью использования простой модели палочкообразных молекул [6, 7]. Поскольку «энтропийное отталкивание» обусловлено снижением конфигурационной энтропии адсорбированных цепей, находящихся между соударяющимися частицами, эффект должен быть значительно большим пди использовании полимеров по сравнению с низкомолекулярными соединениями. Статистическая обработка данных по влиянию адсорбированных полимеров на стабилизацию дисперсий была ранее выполнена Майером [11]. Идея стабилизации дисперсий адсорбированными полимерными молекулами была высказана также Хеллером и Пафом [5]. По их предположениям, присутствие адсорбированных макромолекул

Эффекты улучшения смачиваемости, «энтропийного отталкивания» и возникновения стерических препятствий, безусловно, играют определенную роль при стабилизации дисперсий твердых частиц блок- и привитыми сополимерами. С другой стороны, поскольку дисперсии, стабилизированные блоксополимерами, характеризуются значительно большей продолжительностью осаждения, чем дисперсии, стабилизированные гомополимерами в аналогичных условиях, следует предположить, что при использовании блоксополимеров «работает» дополнительный механизм. Модель, изображенная на рис. 1, представляет собой попытку объяснить этот дополнительный фактор стабилизации с помощью хорошо известной несовместимости химически различающихся полимерных блоков. Когда две частицы сталкиваются с силой, достаточной, чтобы вызвать проникновение друг в друга двойных слоев, окружающих частицы, возникают взаимодействия, препятствующие флокуляции в тех случаях, когда слой А первой частицы проникнет в слой Б второй частицы, причем эти условия будут выполняться тогда, когда блоки А и Б несовместимы.

Хотя мы полагаем, что взаимодействие двойных полимерных слоев (рис. 1) имеет определяющее значение при стабилизации дисперсий блок- и привитыми сополимерами, нельзя исключать вероятное влияние на стабилизацию ионных зарядов. Дело в том, что адсорбированные на поверхности частиц двуокиси титана бутадиен-стирольные блоксополимеры содержат карбоксильные группы. Ионные силы могут способствовать как стабилизации, так и флокуляции. В исследованных системах стабильность дисперсий уменьшается с повышением степени карбоксилирования. При слишком высоких степенях карбоксилирования бутадиен-стирольные блоксополимеры дей-. ствуют скорее как флокулирующие, чем как диспергирующие агенты. Простое объяснение этого эффекта можно дать, если предположить, что полимерные цепи адсорбируются на поверхности твердой частицы в виде петель, выступающих в дисперсионную среду [17]. Если в полибутадиеновом блоке сополимера присутствует слишком много карбоксильных групп, не все из них смогут войти в соприкосновение с поверхностью двуокиси титана. Некоторые расположатся на внешней части складок цепей, которые выступают в дисперсионную среду. Далеко расположенные группы могут адсорбироваться на поверхности другой частицы двуокиси титана, обусловливая, таким образом, флокуляцию за счет сшивания.

Растворимый компонент, создавая в разбавленном растворе на поверхности каждой частицы слой полимера, ответственен за стабилизацию дисперсии, предотвращающую флокуляцию. Химическая природа диспергируемых частиц не имеет большого значения, так как образующийся стерический барьер столь эффективен, что различие в притяжении между частицами становится несущественным. Например, поли(гидроксистеариновую кислоту) с молекулярной массой в интервале 1500—1800 успешно использовали для стабилизации дисперсий таких различных материалов, как полиметилметакрилат и полиакрилонит-рил [7], найлон и полиэтилентерефталат [8], двуокись титана и

В двух основных способах, применяемых для стерической стабилизации дисперсий таких полимеров в неводных средах, стабилизатор — это блок или привитой сополимер, который либо образуется конкурентно с полимером дисперсной фазы путем прививки на растворимый полимер, находящийся в непрерывной фазе, либо его готовят отдельно и прибавляют к дисперсионной реакционной среде в виде готового блок- или привитого сополимера. При использовании первого метода предшественник привитого стабилизатора находится в растворе с момента начала дисперсионной полимеризации и представляет собой растворимый компонент стабилизатора, модифицированный так, что он содержит одну или более группу, способную к сополимеризации или к участию в реакциях передачи цепи. Типичным примером является натуральный каучук, который в присутствии перекисных инициаторов и акриловых мономеров очень легко образует привитые сополимеры за счет роста цепей акрилового полимера по радикальным центрам, возникающим при отрыве водорода [24].

Так, дисперсии акриловых полимеров были стабилизированы привитыми сополимерами, в которых якорный компонент был идентичен или же подобен данному акриловому полимеру, но мог быть и полимером другой природы, например, поливинил-ацетатом [5]. В другом случае для стабилизации дисперсий акриловых полимеров использовали блоксополимеры, в которых якорный компонент представлял собой эпоксидную смолу (конденсат дифенилолпропана и эпихлоргидрина) [25]. Дисперсии сополимеров на основе винилацетата получали с использованием стабилизаторов, содержащих акриловые якорные компоненты [5]. Во всех этих случаях дисперсный полимер должен был сильно набухать в своем мономере (см. раздел IV.4).




Соединения используют Соединения находятся Соединения некоторые Соединения неустойчивы Соединения образование Соединения образующиеся Соединения оказались Соединения отличающиеся Соединения переходных

-
Яндекс.Метрика