Главная --> Справочник терминов


Существенно изменяются В конечном итоге формулировка поставленной проблемы должна охватить как технические, так и экономические аспекты, но формулировка ее может существенно изменяться, уточняться, переформулировываться в процессе исследований.

Это преимущество процесса низкотемпературной абсорбции имеет важное значение, так как по мере отработки нефтяных месторождений состав попутного газа, поступающего на ГПЗ, может существенно изменяться, и при отсутствии на заводе гибких схем могут возникнуть серьезные трудности с обеспечением производства всех товарных продуктов, включая этан (на установках НТК уменьшение содержания в газе пропана и более тяжелых углеводородов приводит к снижению извлечения этана даже при неизменном содержании этого компонента в исходном сырье).

Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения Кр и К0 уменьшаются, а во вторых, К0 значительно более чувствительна к величине эффективной вязкости среды, чем А"р. Отношение К^/К0 с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения К~ начинают существенно изменяться при Хм > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому Кр должна уменьшаться значительно медленнее, чем К0, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для громоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка.

На основе приведенного становится ясным, что для обычных нестационарных разветвленных реакций только в редких случаях осуществляются условия, допускающие приложимость формулы (111-24). Действительно, у этих реакций ср обычно столь велико, что скорость достигает очень больших значений (что и воспринимается нами, как взрыв) до того, как значение ср может начать существенно изменяться вследствие израсходования исходных веществ.

Сила бензойной кислоты может существенно изменяться в зависимости от взаимного расположения заместителя и карбоксила и от природы этого заместителя (табл. 16).

Гетерогенность структуры полимеров и ее энергетических характеристик на всех уровнях и термофлуктуационный статистический характер освобождения тех или иных степеней свободы молекулярного движения приводят к появлению большого числа вторичных областей релаксации, которые являются размытыми, т. е. имеют место не точки, а области переходов. Плавление кристаллов происходит в результате двух факторов: энергетического (преодоление сил межмолекулярного взаимодействия) и энтропийного (повышение гибкости полимерных цепей). Поэтому Гпл в зависимости от сил межмолекулярного взаимодействия и жесткости молекулярных цепей может существенно изменяться. Так как Тс и Гпл определяются уровнем подвижности молекулярных цепей, между ними существует связь следующего вида: 0,5 71Пл< Г<:ГС<0,8ГПЛ. В соотношении Гпл = const• Гс для симметричных полимеров const = 0,5, а для несимметричных (в которых атом главной цепи не содержит двух одинаковых заместителей) const = = 0,66.

В зависимости от принятой технологии, например свободно-радикальной полимеризации мономеров, могут существенно изменяться молекулярная масса и молекулярно-массовое распределение полимеров, соотношение в макромолекуле звеньев различной структуры и их взаимное расположение. А это, в свою очередь, влияет на важнейшие свойства полимера — его вязкость (важно при переработке), прочность, эластичность, плотность, твердость и другие показатели, определяющие эксплуатационную пригодность полимера.

Это преимущество процесса низкотемпературной абсорбции имеет важное значение, так как по мере отработки нефтяных месторождений состав попутного газа, поступающего на ГПЗ, может существенно изменяться, и при отсутствии на заводе гибких схем могут возникнуть серьезные трудности с обеспечением производства всех товарных продуктов, включая этан (на установках НТК уменьшение содержания в газе пропана и более тяжелых углеводородов приводит к снижению извлечения этана даже при неизменном содержании этого компонента в исходном сырье).

Реакционная способность зависит не только от энергии основного, но и от энергии переходного состояния, и АС* определяется разностью свободных энергий исходного и переходного состояний. Кроме того, механизм реакции может включать несколько стадий, каждая из которых характеризуется своей энергией переходного состояния. Наконец, механизм реакции может существенно изменяться для различных классов ароматических соединений. Все это заставляет рассматривать данные по реакционной способности как абсолютно ненадежный критерий ароматичности. Этого недостатка лишены определенные физические критерии. К числу наиболее важных физических критериев ароматичности относятся термодинамические, магнитные и структурные свойства сопряженных циклических полненов.

Как было показано выше, процесс РКУ-прессования очень сложен. В ходе этого процесса кристаллографическая текстура может существенно изменяться в зависимости от числа проходов и той зоны в образце, из которой был вырезан образец для структурных исследований. В связи с этим текстурные изменения при низкотемпературном отжиге могут приводить к формированию текстур, отличающихся не только интенсивностью компонент, но и их видом.

жет существенно изменяться в зависимости от характера ли-

Анализ распределения потоков в десорбере показал, что количество жидкости и пара и соотношение их существенно изменяются по высоте аппарата — в укрепляющей секции количество жидкости под тарелкой питания в 3—5 раз меньше, чем на верху десорбера; количество пара в отгонной секции уменьшается в напра-плении от куба колонны к зоне питания в 6 раз. При этом в укре-вляющей секции отношение количества жидкости Lmax к количеству паров Fmax меньше 1, а в отгонной секции значительно больше 1. При такой организации процесса наблюдаются большие термодинамические потери, так как в низ десорбера приходится подводить значительное количество высокопотенциального тепла, а в. верхней части десорбера — конденсировать и охлаждать большое количество углеводородов. Такое распределение нагрузок по высоте десорбера приводит к ухудшению гидродинамических условий работы тарелок и снижению эффективности работы десорбера.

возрастает предел текучести. Показатели пластичности меняются менее закономерно. Механические свойства сплавов меди существенно изменяются в процессе холодной деформации, поэтому медные сплавы могут поставляться в нагартованном и полунагартованном состоянии. Для изготовления ответственных узлов и деталей криогенного оборудования могут применяться латуни марок Л62, ЛС59-1, ЛЖМЦ 59-1-1, а из бронз — оловянно-фосфористая Бр. ОФ10-1, бериллиевая Бр. Б2 и алюминиевые бронзы.

Химические свойства веществ существенно изменяются от присутствующих в них примесей. Поэтому для абсолютно чистых ве-

Температурный коэффициент вязкости (кажущаяся энергия активации вязкого течения) расплавов волокнообразующих полимеров существенно зависит от степени аномалии вязкостных свойств: с уменьшением доли эластической деформации в процессе сдвигового течения снижаются значения АЕр- Так, для расплавов ПКА в области температур 543-553 К величина А.ЕР = 63-^64 кДж/моль, а в диапазоне 553-573 К она возрастает до 120-125 кДж/моль, т.е. почти вдвое. С увеличением молекулярной массы полимера значения \Ер существенно изменяются (рис. 4.16, а).

Уменьшение наклона кривой о = f(e) по мере увеличения степени растяжения связано с началом развития в образце вынужденно-эластической деформации. С возрастанием напряжения скорость вынужденно-эластической деформации быстро увеличивается. В точке максимума на кривой а = /(е) скорость вынужденно-эластической деформации становится равной скорости растяжения, задаваемой прибором. Напряжение, при котором это наблюдается, называют пределом вынужденной эластичности (ав). По достижении ав происходит резкое сужение образца — образование так называемой «шейки». При переходе в шейку полимер ориентируется и его свойства по сравнению со свойствами исходного материала существенно изменяются. Ориентированный материал обладает в стеклообразном состоянии более высокими значениями модуля упругости и предела вынужденной эластичности в направлении ориентации, чем изотропный материал. Когда при образовании «шейки» достигается степень вытяжки, обеспечивающая заметное возрастание ав, развитие вынужденно-эластической деформации в шейке резко замедляется. Процесс деформации продолжается у границ шейки, где сечение образца уменьшено, т. е. там, где напряжение повышено, а упрочнение еще мало. На пологом участке кривой растяжения (участок //) напряжение при удлинении остается практически постоянным. Поперечное сечение шейки изменяется мало, и удлинение образца происходит, главным образом, за счет вынужденной эластической деформации материала у границ шейки. Длина шейки при этом увеличивается. Растяжение с образованием шейки и дальнейшим ее распространением является особенностью твердых полимеров.

Макромолекулярная природа полимеров существенно изменяет протекание в них химических реакций по сравнению с низкомолекулярными аналогами. Например, при взаимодействии с серой или кислородом низкомолекулярных олефинов, моделирующих строение элементарных звеньев гюлидиенов, образуются соответствующие низкомолекулярные сульфиды, альдегиды, кетоны и другие соединения. У полидиенов эти реакции, аналогичные по механизму, приводят к образованию сетчатых структур (серная вулканизация) или продуктов распада макромолекул на более мелкие образования (окислительная деструкция). При этом существенно изменяются молекулярная масса и молекулярно-массовое распределение исходных полимеров и их физико-механические свойства.

Определяющей характеристикой сетчатой структуры полимера является молекулярная масса, или размер участка цепи между двумя сшитыми звеньями (узлами). От размера этих участков зависит проявление свойств индивидуальных макромолекул в сетчатой структуре полимера. Если эти участки значительно больше размеров сегмента макромолекулы, то сетчатый полимер сохранит, в принципе, основные свойства, присущие исходному полимеру (например, высокоэластичность, химическая реакционноспособность). Такой сетчатый полимер будет ограниченно набухать в характерных для исходного полимера растворителях. Если же размер участка цепи между сшитыми звеньями (узлами) близок к размеру сегмента или меньше его, то свойства исходного полимера существенно изменяются: резко падает гибкость цепи, а, следовательно, уменьшаются высокоэластические свойства, снижается или теряется совсем способность к набуханию в растворителях данного полимера.

В таблице 6 сопоставляются все четыре характеристики для разных типов связей. Необходимо подчеркнуть, что речь идет о нормальных связях, не находящихся под влиянием сопряжения. У связей, входящих в сопряженные системы, свойства существенно изменяются.

Анализ распределения потоков в десорбере показал, что количество жидкости и пара и соотношение их существенно изменяются по высоте аппарата — в укрепляющей секции количество жидкости под тарелкой питания в 3—5 раз меньше, чем на верху десорбера; количество пара в отгонной секции уменьшается в направлении от куба колонны к зоне питания в 6 раз. При этом в укрепляющей секции отношение количества жидкости Lmax к количеству паров ^иах меньше 1, а в отгонной секции значительно больше 1. При такой организации процесса наблюдаются большие термодинамические потери, так как в низ десорбера приходится подводить значительное количество высокопотенциального тепла, а в верхней части десорбера — конденсировать и охлаждать большое количество углеводородов. Такое распределение нагрузок по высоте десорбера приводит к ухудшению гидродинамических условий работы тарелок и снижению эффективности работы десорбера.

вторые, по-видимому, создают центры кристаллизации; кроме '1С)го, 2п-ксантогенат целлюлозы значительно медленнее разла-Гэ^тс:н кислотой осадителыюй панны, чем Ка-ксантогепат. В эави-^ь-ости от его концентрации в осадителыюй панне условия фор-л1°ванин нити существенно изменяются, особенно сильно это ска-••^ается в том случае, когда в пискозу вводят модификаторы. ;с "Центр ация сульфата цинка может быть оодобраиа так, что '11ГЬ получается более однородной и структура ее почти полно-соответствует структуре оболочки. Эта особенность сульфа-ка ппгроко используется при получении вискозной кордной

цией макромолекул [212]. В области 453-493 К существенно изменяются реологи-




Сополимера акрилонитрила Сополимера полистирола Сополимеризация бутадиена Сополимеризации метилметакрилата Сополимерных продуктов Сополимеров полученных Сополимеров винилиденфторида Симметричные соединения Сополимер состоящий

-
Яндекс.Метрика