Главная --> Справочник терминов


Скоростях деформаций В разд. 7.1 и 7.2 первичные и вторичные свободные радикалы рассматривались в качестве микрозондов, которые характеризуют местонахождение и молекулярное окружение разрывов цепей. Как показано в гл. 6, первичные механорадикалы всегда расположены на концах цепи и большей частью нестабильны. Эти радикалы будут передавать свободные электроны со скоростью, зависящей от температуры, и таким образом «превращаться» во вторичные радикалы. Данная реакция, а также последующие реакции преобразования и спада числа радикалов, включая их рекомбинацию, представляют интерес для объяснения процесса разрушения в двух отношениях. Во-первых, эти реакции усложняют определение концентрации и молекулярного окружения исходных мест разрыва цепи. Во-вторых, они изменяют физические свойства других переплетающихся цепей путем внедрения в последние неспаренных электронов и образования сшивок. Для рассмотрения спектроскопических особенностей, стабильности и конформации свободных радикалов рекомендуем обратиться к исчерпывающей монографии Рэнби и Рабека [37] и к обзорным статьям Кэмпбелла [38], а также Сома и др. [39].

— исходная случайная конформация цепей переходит в более вытянутую конформацию со скоростью, зависящей от деформации, температуры и внутренней вязкости;

том. С момента погружения пластинки в элюент возникает фронт смачивания, который перемещается по слою сорбента. При этом с током элюента перемещаются также и исследуемые вещества со скоростью, зависящей от их коэффициентов адсорбции. К моменту, когда фронт элюента (граница увлажнения) достигнет верхней части слоя сорбента, хроматографическое разделение заканчивается. Вещества, имеющие окраску, обнаруживаются на хроматограмме в виде отдельных пятен. Если хроматографируются бесцветные вещества, в зависимости от их природы приходится поступать различным образом. Иногда достаточно к сорбенту добавить люминофор, чтобы в УФ свете обнаружить на хроматографической пластинке пятна исследуемых веществ. В других случаях пластинку приходится опрыскивать специальными реагентами, образующими окрашенные соединения с исследуемыми веществами.

Исследования Спенса и Юнга (1912 г.) показали, что при значительном количестве серы (более 5%) присоединение ее к каучуку происходит с постоянной скоростью, зависящей от темпера-

аналитических методов, чрезвычайно удобных для характеристики этих высокомолекулярных соединений. Метод ультрацентрифугирования Сведберга служит для определения молекулярного веса. При вращении с очень большой скоростью ячейки, содержащей раствор белка, молекулы белка под действием центробежных сил движутся от центра со скоростью, зависящей от величины молекулярного веса. Специальная оптическая система дает возможность наблюдать и фотографировать ячейку во время центрифугирования. Молекулярный вес может быть найден либо из определения седиментационного равновесия, либо по скорости седиментации. Хотя теоретически первый метод точнее, для достижения равновесия требуется длительное время, и поэтому более точные значения получают исходя из определения скорости седиментации. При применении ультрацентрифуги можно установить также гомогенность молекул (по величине и форме). Тизелиус предложил

со скоростью, зависящей от природы этой аминокислоты и от рН среды. Разделение и анализ смесей аминокислот, основанные на этом явлении называются электрофорезом.

происходит с небольшой скоростью, зависящей от многих факторов, в

ремещается по слою сорбента. При этом в токе элюента перемещаются также и исследуемые вещества со скоростью, зависящей от коэффициента адсорбции. К моменту, когда фронт элюента (граница увлажнения) достигает верхней части слоя сорбента, хроматографиче-ское разделение заканчивается (на это требуется 50-90 мин). После этого пластинку вынимают из камеры, отмечают карандашом линию фронта, высушивают и детектируют пятна.

т. е. затухание экспоненциальное со скоростью, зависящей от среднего по спектру времени релаксации:

Если экспонирование — оптический процесс, который изменяет компоненты фоторезиста химически, то проявление — поверхностное растворение и удаление фоторезиста со скоростью, зависящей от степени превращения ингибитора растворения.

подвергаются термическому разложению (обычно в хлорбензоле) со скоростью, зависящей от устойчивости свободного радикала R-. Очевидно, во многих случаях происходит одновременный разрыв кислород-кислородной и углерод-углеродной связи с выделением двуокиси углерода:

Рассмотрим два одинаковых капилляра, один из которых изображен на рис. 6.1. В одном — ньютоновская жидкость, другой заполнен полимерным расплавом. Эксперимент показывает, что при изменении перепада давлений в капилляре в обоих случаях скорость истечения Q возрастает. Однако для ньютоновской жидкости отношение Q/ЛР постоянно, т. е. ее реакция на приложенное давление постоянна, в то время как для расплава полимера отношение Q/AP постоянно лишь при очень малых значениях АР и возрастает более чем в 100 раз при росте АР. Иначе говоря, сопротивление внешнему воздействию падает при росте АР. Такие жидкости «податливы», поэтому их называют псевдопластическими или «разжижающимися». Результаты этого эксперимента типичны для большинства расплавов полимеров, его реологический смысл заключается в том, что при росте скоростей деформации реакция жидкости изменяется и ее поведение из ньютоновского превращается в неньютоновское. Последнее, как правило, преобладает при скоростях деформаций, реализуемых в реальных процессах переработки. Фактически уменьшение вязкости представляет собой наиболее важную для процессов переработки особенность неньютоновского поведения расплавов полимеров. Эта особенность реологического поведения расплава облегчает течение при больших скоростях и снижает опасность перегрева вследствие чрезмерных тепловыделений при вязком течении. Конечно, с помощью определяющего уравнения для ньютоновской жидкости (6.2-1) такое поведение описать нельзя.

Расплавы полимеров ведут себя как ньютоновские жидкости только при очень малых скоростях сдвига. Более того, как указывалось в разд. 6.3, уравнения ЛВУ ограничиваются очень малыми деформациями. При более высоких скоростях деформаций и при больших деформациях применяются нелинейные определяющие уравнения вязкоупругости типа рассмотренных в разд. 6.3 уравнений ЗФД, Уайта—Метцнера, ГМ, БКЗ, Лоджа или Богью. Только с помощью более сложных уравнений удается полуколичественно описать реологическое поведение расплавов полимеров, остальные согласуются с экспериментом лишь качественно. Тем не менее теория линейной вязкоупругости полезна по следующим соображениям: 1) она дает возможность понять, почему полимеры проявляют вязко-упругое поведение, а также качественно показывает тенденции зависимости их механических свойств от времени; 2) она объясняет наблюдаемую экспериментально температурно-временную эквива-

Температурная зависимость предела вынужденной эласшчности при разных скоростях деформаций представлена на рис. 90. Из этого рисунка видно, что величина ав зависит пе только от темпе-ратуры, но и от скорости приложения напряжения, т. е. виден релаксационный характер вынужденной эластичности. Прямая пересекается с осью абсцисс в точке, соответствующей

Основываясь на этом уравнении состояния для сверхпластического течения, можно ожидать [349, 350], что уменьшение размера зерна должно привести к резкому повышению сверхпластических свойств и достижению сверхпластичности при относительно низких температурах и/или высоких скоростях деформаций. Поэтому развитие методов ИПД для получения наноструктурных материалов открыло новые возможности для исследования сверхпластичности в металлических материалах, а также дало возможность начать новые систематические экспериментальные исследования в этой области [319]. Эти исследования начались в двух направлениях: первое — это получение объемных образцов с однородной структурой и размером зерна менее 1 мкм (уровень суб-микрокристаллов) с помощью РКУ-прессования или многократной ковки; второе — это получение нанокристаллических структур в образцах с малыми геометрическими размерами (менее 15-20мм), используя метод интенсивной пластической деформации кручением.

Простейшими реологическими уравнениями состояния идеальных упругих тел и вязких жидкостей являются законы Гука и Ньютона. Линейные соотношения в них принимаются только при малых напряжениях и скоростях деформаций. Реальные эластомеры обладают и упругими, и вязкими свойствами в разных сочетаниях, которые зависят не только от деформации, но и от времени. Временная зависимость модуля упругости проявляется в релаксации напряжения. Обратимое изменение вязкости во

Следует еще раз подчеркнуть, что линейные соотношения в законах Гука и Ньютона приближенно справедливы лишь при малых деформациях или скоростях деформаций соответственно. Кроме того, реальные реологические среды, и прежде всего эластомеры, обладают и вязкими, и упругими свойствами в различных сочетаниях. Поэтому для описания деформационного поведения эластомеров необходимо рассмотреть основные положения линейной и нелинейной теории вязкоупругости.

При скоростях деформаций порядка 101 — 102 с"1 эластомеры ведут себя подобно аномально-вязким или псевдопластичным жидкостям. Можно записать [50], что:

При регулярной молекулярной структуре и сильном взаимодей- '• ствии возникающие упорядоченные области представляют собой микрокристаллиты различного строения — ленты, ламели (пластины), фибриллы и сферолиты [2]. Надмолекулярные структуры в аморфных полимерах неустойчивы и характеризуются коротким временем жизни кристаллитных заготовок [1]. Эти структуры ярче проявляются в саженаполненных смесях при пониженных температурах и скоростях деформаций (рис. 2.1).

Температурная зависимость предела вынужденной эластичности при разных скоростях деформаций представлена на рис. 90. Из этого рисунка видно, что величина ств зависит не только от температуры, но и от скорости приложения напряжения, т. е. виден релаксационный характер вынужденной эластичности. Прямая as = l(T) пересекается с осью абсцисс в точке, соответствующей

Изложенные выше представления об упругих телах, вязких жидкостях и линейных вязкоупругих средах являются теоретическим фундаментом современных концепций реологических свойств-полимеров. Они основаны на модельном описании поведения полимеров как сплошных сред в простейших условиях деформирования. -Так, модель упругого тела описывает совокупность равновесных состояний среды, модель вязкой жидкости — поведение материала в установившемся сдвиговом течении, модель вязкоупругого тела с линейной зависимостью между напряжениями и деформациями — различные режимы деформирования при малых (стремящихся к нулю) напряжениях, деформациях и скоростях деформаций. Все эти случаи являются крайними из многообразия возможных процессов деформирования, но вместе с тем они являются важнейшими, так как любые сложные теории реологических свойств полимерных систем должны удовлетворять закономерностям их поведения в указанных простейших условиях.

нами было проведено изучение деформации студией при различных скоростях деформаций и температурах.




Спиртового гидроксила Способами получения Способные присоединять Способных инициировать Способными образовывать Способностью растворять Синтетических полимеров Способность целлюлозы Способность макромолекул

-
Яндекс.Метрика