Главная --> Справочник терминов


Скоростях охлаждения Полимерные материалы являются вязкоупругими твердыми телами. Склонность последних к неупругому и пластическому деформированию убывает, когда они испытываются при высоких скоростях нагружения и (или) при низких температурах. Более низкая деформируемость вызывает у прежде вязкого или высокоэластичного полимера хрупкое разрушение. Убедительным доказательством этого факта служит хрупкое разрушение при испытании на удар натурального каучука при температуре жидкого азота.

В цитированной литературе рассматриваются другие особенности процесса разрушения, которые могут быть получены с помощью фрактографического анализа. Это — влияние линий Валнера на положение ребер [61, 196, 200], «разрушение без образования трещин серебра» в ПС с низкой молекулярной массой [155], задержка разрыва трещин серебра при усталости материала (разд. 3.3), пластическое разрушение ПС при более низких скоростях нагружения и при температурах, близких к Тс, в результате роста одной или более каверн ромбической формы [169], выявление глобулярной структуры путем ионного травления вещества трещин серебра ПС [132] и поверхности ПВХ [208] и особенности поверхности разрушенных образцов фенолформальдегида, напоминающие трещины серебра [195].

Метод основан на экспериментальном определении диаграмм «о —е» при постоянной температуре, но при различных, меняющихся от опыта к опыту скоростях нагружения. При этом верхний предел скорости нагружения ограничен такими величинами, при которых в испытываемом образце не возникают волновые

В качестве примера рассмотрим экспериментальные данные испытаний органических нитей на основе параполиамидов. На рис. 2.16 представлены диаграммы «а — е» при различных скоростях нагружения р. Температура при этом сохранялась постоянной.

Механизм разрушения, относящийся к группе атермических процессов разрушения, у которых роль теплового движения атомов исключается, реализуется при температурах, близких к О К, или при больших скоростях нагружения (близких к звуковым). В стеклообразном состоянии (ниже температуры стеклования Тс) или в кристаллическом состоянии (ниже температуры плавления Гпл) на-

Вследствие специфики строений макромолекул и надмолекулярных структур механические свойства полимеров характеризуются рядом особенностей и сильно зависят не тотько от состава и строения по "им ра но и от внешних условий. Работоспособность полимерных материалов во многом определяется ре жимом их деформирования, прежде всего характером действия внешних сн.п. Различают стат-нческне и динамические режимы нагружснин. К стспич спим относят воздействия при постоянных нагрузках или деформациях, а также при небочьших скоростях нагружения к динамическим — ударные или циклические воздействия,

при постоянных скоростях нагружения и растяжения 79. 80, 185 ел. иа раздпр 224 ел. на растрескивание 262 ел.

Действительно, из этого выражения следует, что при сг—нтр ик—*сот=.Бр. Формально при очень больших скоростях нагружения (е—*оо) величина sp может принимать и нулевое значение. На примере полиформальдегида это показано в работе [6]. Тогда формула (5.137) преобразуется в соотношение (5.126).

Разрушение полимеров начинается с микродефектов, распо-лагающихсм—обычно гаповерхности образца. Специфичность^ процесса разрушения полимеров проявляется в том, что микродефекты в полимерах могут разрастаться до размеров, сравнимых с размерами сечения образца. Релаксационные свойства полимерных материалов обусловливают перераспределение и выравнивание напряжений, что приводит к согласованному росту микродефектов. При больших скоростях нагружения перераспределение напряжений не успевает произойти, и микродефекты растут несогласованно.

Впоследствии этот метод (вариация интенсивности межмолекулярного взаимидеи-ствия за счет концентрации полярных атомных групп при сохранении постоянной степени поперечного сшивания) неоднократно использовался различными исследователями. Хотя природа химических связей, препятствующих разрушению образца, и их концентрация были для всех образцов одинаковыми, тем не менее при конечных скоростях нагружения разрушающее напряжение оказывалось тем больше, чем больше уровень межмолекулярного взаимодействия.

а — при малых скоростях нагружения и высокой температуре; б — при больших скоростях нагружения и низких температурах.

В работах многих иностранных исследователей структурное стеклование рассматривается, тем не менее, как фазовый переход второго рода. Такой прямолинейный подход в силу изложенного следует признать неверным. Однако необходимо обратить внимание на работы Гиббса и ДиМарцио *, которые считали, что Тс некоторым образом связана с истинным равновесным переходом второго рода при температуре Т0, лежащей ниже Тс на 51,6 °С (в соответствии с формулой (П. 2) при Т0 энергия активации становится бесконечно большой, как предполагается, вследствие исчезновения свободного объема]. В этих работах под Тс понимается стандартная («релаксационная») температура стеклования тГ (см. ниже). При больших скоростях охлаждения Тс > Г", т. е. возрастает, а не снижается в соответствии с природой фазовых переходов. Поэтому в подходе Гиббса и ДиМарцио остается много невыясненного.

Процесс размягчения стекла не имеет специфических признаков до тех пор, пока скорость нагревания та же, что и скорость охлаждения, при которой получено стекло. Если же стекла получены при различных скоростях охлаждения или путем различных режимов отжига, то они получаются с различной структурой. Отжиг стекла, как известно, изменяет структуру от менее плотной к более плотной. Иначе говоря, структура стекла зависит от его тепловой «предыстории». Различные по структуре стекла при нагревании с

Из кинетической теории следует, что в интервале стеклования структура вещества при охлаждении сначала «запаздывает» в нарастающем темпе, затем темп запаздывания замедляется и структура замораживается. В интервале размягчения также наблюдается запаздывание перестройки структуры, но несколько иначе, чем при охлаждении. В результате в температурном ходе изменения структуры (а следовательно, и физических свойств) должен иметь место гистерезис даже при одинаковых скоростях охлаждения и нагревания, что и наблюдалось экспериментально. Однако рассмотренная теория не может претендовать на количественное согласие с реальным процессом стеклования из-за грубости принятой модели вещества, неучета группового механизма релаксации и конкретной структуры различных жидкостей.

Рис. 10.14. Схематическое изображение изменения объема полимера с температурой при различных скоростях охлаждения и нагревания образцов

Произведя измерения при разных скоростях изменения температуры, можно оценить значение энергии активации соответствующего процесса и установить его молекулярную природу. В случае дилатометрических измерений при одинаковых скоростях охлаждения и нагревания у полимеров отчетливо проявляется температурный гистерезис, свидетельствующий о неравновесном характере соответствующих процессов.

Аналогичная картина наблюдается при стекловании полимеров. Остатки мономера в цепи полимера соединены химическими связями, поэтому общая подвижность системы значительно мень-те, чем у низкомолекулярных жидкостей, Однако, вследствие теплого движения звеньев, в высокозластическом состоянии время релаксации составляет от Ю-' до 10~6 сек, т. е. относительно мало. Поэтому у эластичных полимеров яря применяемых обычно скоростях охлаждения успевает установиться равновесная структура. Следовательно, прямая ОБ отвечает равновесному состоянию.

Таким образом, из всего сказанного следует, что чем медленнее проводится охлаждение, тем ниже температура стеклования, Однако для заметного изменения Тс требуется очень большое время охлаждения. Так, например, при изменении скорости охлаждения на один порядок температура стеклования изменяется всего на несколько градусов. Поэтому числовые значения Тс, определенные различными исследователями дилатометрическим методом при обычных скоростях охлаждения, как правило, очень близки.

Полученный в работе [90] результат показывает, что при малых скоростях охлаждения температурный интервал стеклования вырождается и остается только одна температура стеклования. В общем случае при анализе поведения полимера в области Т < Tgд, большую роль играет скорость охлаждения. Если скорость охлаждения велика, то температуры Tg \ и rg 2 существенно не совпадают, т.е. переход в стеклообразное состояние происходит в более широком интервале температур.

Если полимер способен к кристаллизации, то на кривой удельного объема при температуре плавления наблюдается разрыв. На рис. 32.2 приведена типичная картина для частично кристаллического полимера, характеризующегося как стеклообразным, так и кристаллическим состоянием. Тт — это температура плавления, Тогда как Т81, ГЙ2, ... отражают температуры стеклования, полученные при различных скоростях охлаждения. Область между Тт и Т8 характеризует переохлажденное состояние, сопровождающееся резкой кристаллизацией. Ниже Тё кристаллизация не может протекать с большой скоростью из-за высокой вязкости системы, поэтому полимер остается в неупорядоченном стеклообразном состоянии. При уменьшении скорости охлаждения переохлаждение захватывает область более низких температур, вследствие чего переход Т&, имеет место при температуре более низкой, чем Те1. При бесконечно большом времени охлаждения температура стеклования стремится к какому-то предельному значению (7^). Полимеры в стеклообразном состоянии, достигнутом при различных скоростях охлаждения, характеризуются разными значениями Т8 и плотности. У полностью кристаллических полимеров температура стеклования не наблюдается (рис. 32.3).

Если стекла получены из одного и того же исходного состояния при различных скоростях охлаждения q или при различных режимах отжига, их структура различна (зависит от их тепловой истории). Поэтому стекла с различной тепловой историей при нагревании с одной и той же скоростью w будут иметь различные температуры размягчения.

Если полимер способен к кристаллизации, то на кривой удельного объема при температуре плавления наблюдается разрыв. На рис. 32.2 приведена типичная картина для частично кристаллического полимера, характеризующегося как стеклообразным, так и кристаллическим состоянием. Тт — это температура плавления, тогда как Tgl, Tg2, ... отражают температуры стеклования, полученные при различных скоростях охлаждения. Область между Тт и Tg характеризует переохлажденное состояние, сопровождающееся резкой кристаллизацией. Ниже Tg кристаллизация не может протекать с большой скоростью из-за высокой вязкости системы, поэтому полимер остается в неупорядоченном стеклообразном состоянии. При уменьшении скорости охлаждения переохлаждение захватывает область более низких температур, вследствие чего переход Tg, имеет место при температуре более низкой, чем Tgl. При бесконечно большом времени охлаждения температура стеклования стремится к какому-то предельному значению (Tg]. Г1оли-




Способами получения Способные присоединять Способных инициировать Способными образовывать Способностью растворять Синтетических полимеров Способность целлюлозы Способность макромолекул Способность органических

-
Яндекс.Метрика