Главная --> Справочник терминов


Скоростей деструкции Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 «м3 (ПММА) — 17 нм3 (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона T0+M>P = const. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэнс— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической 3-релаксации.

Однако существуют важные классы материалов, реологические свойства которых зависят от напряжений (внешних воздействий) и скоростей деформации (реакций вещества). Поэтому определяющие уравнения для таких систем нелинейны, и их называют неньютоновскими (особое место в ряду таких сред занимают расплавы и растворы полимеров). Но это не единственное различие в реологическом поведении между расплавами и растворами полимеров и ньютоновскими жидкостями. В следующем разделе будут рассмотрены важные в процессах переработки полимеров эффекты, которые проявляют неньютоновские жидкости,

Рассмотрим два одинаковых капилляра, один из которых изображен на рис. 6.1. В одном — ньютоновская жидкость, другой заполнен полимерным расплавом. Эксперимент показывает, что при изменении перепада давлений в капилляре в обоих случаях скорость истечения Q возрастает. Однако для ньютоновской жидкости отношение Q/ЛР постоянно, т. е. ее реакция на приложенное давление постоянна, в то время как для расплава полимера отношение Q/AP постоянно лишь при очень малых значениях АР и возрастает более чем в 100 раз при росте АР. Иначе говоря, сопротивление внешнему воздействию падает при росте АР. Такие жидкости «податливы», поэтому их называют псевдопластическими или «разжижающимися». Результаты этого эксперимента типичны для большинства расплавов полимеров, его реологический смысл заключается в том, что при росте скоростей деформации реакция жидкости изменяется и ее поведение из ньютоновского превращается в неньютоновское. Последнее, как правило, преобладает при скоростях деформаций, реализуемых в реальных процессах переработки. Фактически уменьшение вязкости представляет собой наиболее важную для процессов переработки особенность неньютоновского поведения расплавов полимеров. Эта особенность реологического поведения расплава облегчает течение при больших скоростях и снижает опасность перегрева вследствие чрезмерных тепловыделений при вязком течении. Конечно, с помощью определяющего уравнения для ньютоновской жидкости (6.2-1) такое поведение описать нельзя.

где Gt, Gn—характеристические материальные функции; Г—тензор скоростей деформации в «вмороженной» системе координат; /', t", i'" ... — переменные интегрирования; t—рассматриваемый момент времени.

где GL G2 — материальные функции; -у'1^ — записанный в деформируемых координатах ковариантный тензор скоростей деформации; •у'-1''' и •у'-1'" — его ковариант-ные производные.

Для контрвариантного тензора скоростей деформации V[i] можно записать аналогичный ряд [1Ь1:

Единственная ненулевая компонента градиента скорости в рассматриваемом течении — это dvjdr. Тензор скоростей деформации примет вид:

Таким образом, компоненты тензора скоростей деформации определяются выражением

Рис. 6.14. Сопоставление зависимостей вязкости при сдвиге г и продольной вязкости т сополимера полиизобутилена с изопреном (бу-тилкаучук бутил 35) от интенсивности тензора скоростей деформации I/ -у-П-у (с~]),

Наиболее ярким примером объектов, обладающих такими реологическими свойствами, являются расплавы ПЭНП (рис. 6.15). На этом же рисунке представлены теоретические кривые, рассчитанные для каучукоподобной жидкости Лоджа [уравнение (6.3-13)], при расчете которых использована функция памяти, справедливая при условии малых деформаций и малых скоростей деформации:

в котором k — тензор, определяющий поле скоростей (он может зависеть от времени), ар — радиус-вектор, определяющий положение соответствующего шара гантели (см. рис. 11.14). Тензор скоростей деформации 7> выраженный через k, имеет вид:

В процессе обработки полимера в плазме газового разряда поверхность образца почти не нагревается, что устраняет возможность искажения структуры поверхностных слоев полимера. Структурный рельеф проявляется за счет разности скоростей деструкции кристаллич-ных и аморфных участков полимера, обусловленной различием в их плотностях. Элементы структуры проявляются более

Установлено, что при окислении каучуков происходят два противоположных по своему влиянию на молекулярную структуру процесса: деструкция и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и различных условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости структурирования. При нагревании в вакууме натуральный каучук, весьма склонный в деструкции, подвергается структурированию11. При окислении дивинилового каучука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается.

наблюдается увеличение начальных скоростей деструкции полиарилата в присут-

Измерение скоростей деструкции полимеров 125

ИЗМЕРЕНИЕ СКОРОСТЕЙ ДЕСТРУКЦИИ ПОЛИМЕРОВ [23]

Для изучения устойчивости, т. е. измерения скоростей деструкции полимеров, существуют два основных метода: измерение потери массы образца полимера (гравиметрический метод) и измерение количества образовавшихся паров. Второй метод может быть как динамическим, так и статическим.

ции можно определить по содержанию золь-фракции s и отношению констант скоростей деструкции и сшивания р/а в конкретном процессе вулканизации [см. ниже (21)].

Таким образом, как следует из работ Флори [36], Скан-лана [39] и Томаса [40], третье допущение теории Тобольского о том, что вторичные узлы связывают ненапряженные цепи, является неверным. Истинные в рамках теории высоко-эластичности значения констант скоростей деструкции узлов могут быть вычислены, следовательно, либо когда вторичное сшивание отсутствует, либо, если скорости обоих процессов соизмеримы, по 'наклону касательной, проведенной из начала координат к кинетической кривой релаксации напряжений в координатах In at/во — время (рис. 2, 3).

В случае пленок из ДХ или ТГФ характер зависимости скорости дегидрохлорирования ПВХ от содержания ПММА в смеси качественно аналогичен случаю распада смесей порошков индивидуальных полимеров и состоит в ингибировании распада ПВХ в присутствии ПММА. Для пленок, отлитых из растворов в хлорбензоле (ХБ) и МЭК, указанная зависимость меняет вид на противоположный (рис. 4а, кривые 3, 4). Численные значения скоростей деструкции пленок во всех случаях превышают значения скорости деструкции для смесей порошков при тех же соотно-

Измеряя содержание геля в зависимости от дозы R и нанося полученные данные на теоретические кривые рис. 19. можно определить отношение скоростей деструкции и сшивания р/а.

Термическая деструкция полиэтилена протекает по механизму, совершенно противоположному механизму разложения двух ранее рассмотренных полимеров. Однако наличие разветвленности в полимере изменяет механизм, по-видимому, вследствие увеличения отношения внутримолекулярной передачи к межмолекулярной [87]. При пиролизе любого полиэтилена выделяется не более 1% мономера. Молекулярные веса полиэтиленов резко уменьшаются [48]. Методом инфракрасной спектроскопии было показано, что на начальных стадиях деструкции разветвленного полиэтилена винильные группы образуются медленнее, чем двойные связи других типов. Это указывает на преимущественный разрыв цепей по местам разветвлений или вблизи этих мест. Ход изменения среднечисловой СП для линейного полиэтилена (полиметилен, полученный полимеризацией диазометана под действием эфирата трехфтористого бора) представлен кривой В на рис. 102. Эта кривая показывает быстроту падения СП при разрывах, протекающих по закону случая. При конверсии в пределах 2% СП уменьшается в 1000 раз. Кривые скоростей для сильно разветвленного полиэтилена показаны на рис. 105. Отсутствие максимума и форма кривых указывают на реакцию с большой длиной «зипа»; с другой стороны, кривые линейных полимеров, имеющие максимумы, хорошо согласуются с теорией деструкции по закону случая. На рис. 103 приведена скорость выделения летучих веществ из линейного полимера с молекулярным весом около 5000000. Полагая L = 72, из величин максимумов можно непосредственно получить константы скоростей деструкции по закону случая. Были вычислены теоретические кривые, имеющие то же значение максимума; оказалось, что они хорошо согласуются с экспериментальными данными. Для константы скорости получено следующее выражение:




Синтетических пиретроидов Способных полимеризоваться Способностью образовывать Способностью вследствие Способность аминогруппы Способность галогенов Способность мономеров Способность отдельных Способность поглощать

-
Яндекс.Метрика