Главная --> Справочник терминов


Сегментальной релаксации Ответ. Повышение температуры образца приводит к интенсификации сегментального движения макромолекул. Поэтому полимерные цепи при нагревании полимера стремятся занять наиболее выгодное в энергетическом отношении положение. В условиях изометрического нагрева эта тенденция проявляется в росте напряжений до тех пор, пока волокно находится в стеклообразном состоянии. При подъеме температуры до Тс и выше увеличивается скорость релаксационых процессов, что приводит к возрастанию сегментальной подвижности полимерных цепей. Это в свою очередь приводит к значительному проявлению высокоэластичности, связанной с повышением подвижности макромолекул. При этом происходит спад напряжений, и вся система становится термодинамически более стабильной.

Ответ. Полимерные цепи каучуков обладают высокой термодинамической гибкостью. Поэтому даже при небольшом повышении температуры происходит значительное увеличение сегментальной подвижности макромолекул, что соответствует переходу полимера в высокоэластическое состояние.

Так, проявление сегментальной подвижности макромолекул целлюлозы возможно лишь при условии присутствия хотя бы небольших количеств воды, являющейся пластификатором для этого полимера. В условиях интенсивного набухания, а также в концентрированных растворах макромолекулы природных во-локнообразующих полимеров способны к самоупорядочению с образованием жидкокристаллических структур.

Механическое стеклование (стеклование в силовых полях) - переход полимеров из высокоэластического в твердое стеклообразное состояние под воздействием энергетических полей, приводящих к резкому уменьшению сегментальной подвижности полимерных цепей.

Структурное стеклование - агрегатный переход от высокоэластического к твердому стеклообразному состоянию, обусловленный уменьшением сегментальной подвижности макромолекул в результате понижения температуры.

Со стеклованием связывается прекращение сегментальной подвижности молекул. Температура стеклования характеризует теплостойкость для аморфных полимеров, работающих в застек-ловапном состоянии, или морозостойкость для полимеров, эксплуатирующихся в высокоэластичном состоянии. Температура стеклования растет при увеличении молекулярной массы до величины Жсегм, характеризующей молекулярную массу механического сегмента макромолекулы, и выше этого значения остается практически постоянной. В отличие от температуры стеклования (Гст) температура текучести с увеличением степени полимеризации возрастает вплоть до температуры химического разложения полимера. Температура хрупкости (Гхр), определяющая нижний температурный интервал эксплуатационной способности конструкционных полимеров, несущих нагрузки, по мере роста молекулярной массы изменяется немонотонно. Варьируя средней молекулярной массой и различным строением чередующихся звеньев молекулярной цепочки, из одного и того же мономера можно получить ряд полимерных веществ с различной молекулярной структурой и обладающих, следовательно, различными физико-механическими свойствами. Реальные, выпускаемые промышленностью, полимеры полидисперсны, т. е. представляют собой смесь полимерго-мологов (макромолекул, составленных из полимерных веществ одного химического строения, по отличающихся молекулярной массой) с определенным молекулярно-массовым распределением. Молекулярная масса полимеров может меняться в очеш; широких пределах, и любой образец полимера представляет собой смесь макромолекул различной длины. Полидисперсность полимеров приводит к тому, что в реальных материалах существует широкий набор (спектр) времен релаксации, включающий по мере перехода от низших полимергомологов к высшим очень быстрые неравновесные процессы, исчисляемые долями секунд, до весьма замедленных, для завершения которых могут потребоваться многие годы. Поэтому полимерные материалы при статическом на-гружении могут находиться в неравновесном состоянии (непрерывно деформироваться) практически неограниченно долгое время. И в то же время эти процессы являются обратимыми.

Другой особенностью изменения диэлектрической проницаемости и потерь в полимерах является их чувствительность не только к изменениям сегментальной подвижности, но и к проявлениям подвижности боковых и концевых групп, а также отдельных звеньев макромолекулы. Благодаря высокой чувствительности к проявлению подвижности всех элементов структуры макромолекул, а также возможности проводить исследования в уникально широком диапазоне частот изучение диэлектрических свойств является прекрасным способом исследования структуры полимеров, к сожалению, недостаточно еще распространенным применительно к эластомерам.

На рис. 1. 18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у'. V и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука; а'-процесс — потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе; Я-процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур; ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса ос', А и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров.

Процесс стеклования обусловлен изменением сегментальной подвижности цепей в неупорядоченной части полимера. Следующее из принципа температурно-временной зависимости уравнение Вильямса — Ландела— Ферри [38, с. 251] относится к процессу а-релаксации и учитывает температурную зависимость энергии активации (см. гл. II и V). Процессу а-релаксации соответствует самый высокий максимум потерь (см. рис. 1.19).

а'-Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации а'-процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. а'-Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения.

Эти три процесса Я-релаксации характеризуются" одной и той же энергией активации, несколько большей, чем для процесса сегментальной релаксации. В то же время значения коэффициентов при расчете их из формулы (1.23) оказываются значительно больше, чем коэффициент В = 5-10~12с для сегментальной подвижности. Так как энергия активации этих трех процессов имеет одну и ту же величину для одного и того же полимера, можно предполо" жить, что процессы медленной стадии физической релаксации определяются единым механизмом и связаны с одной и той же группой релаксаторов.

Эти три процесса Я-релаксации характеризуются" одной и той же энергией активации, несколько большей, чем для процесса сегментальной релаксации. В то же время значения коэффициентов при расчете их из формулы (1.23) оказываются значительно больше, чем коэффициент В = 5-10~12с для сегментальной подвижности. Так как энергия активации этих трех процессов имеет одну и ту же величину для одного и того же полимера, можно предполо" жить, что процессы медленной стадии физической релаксации определяются единым механизмом и связаны с одной и той же группой релаксаторов.

Исследование диэлектрических свойств полиэтилентерефталатФ (ПЭТФ) показало, что его кристаллизация существенно сказывается как на характере дипольно-сегментальной релаксации, так и на электропроводности*. По мере протекания кристаллизации увеличивается наивероятнейшее время релаксации и расширяется, релаксационный спектр, что приводит к размытию максимума tg б. Значение tg б в максимуме высококристаллического образца (рис. VII. 10, кривая 4) в семь раз меньше значения tg б аморфного образца ПЭТФ (рис. VII. 10, кривая /). Кристаллизация спо-

собствует уменьшению потерь электропроводности. Характер изменения дипольно-сегментальной релаксации по мере кристаллизации свидетельствует о том, что высокотемпературный максимум кристаллического ПЭТФ обусловлен наличием аморфной фазы. Этот вывод подтверждается оценкой энергии активации данного процесса, проведенной для высокоориентированной и высококристаллической пленки, структура которой не меняется при нагревании до 150 °С. Значение анергии активации 268 кДж/моль, рассчитанное по данным рис. VII. 11, характерно для потерь дипольно-сегментальной релаксации. Экстраполяция зависимости Ig vMaKc =* = f(\/T) до частоты 1 Гц позволяет оценить температуру стеклования полимера.

Изменение характера процессов дипольно-сегментальной релаксации при кристаллизации ПЭТФ сходно с их изменением при

мера. Так. как процессы дипольно-групповой релаксации в последнем случае обусловлены движением групп СОО, то и процессы дипольно-сегментальной релаксации связаны с движением этих же-групп.

Изменение параметров процесса дипольно-сегментальной релаксации при кристаллизации полиэтилентерефталата аналогично-их изменению в кристаллизующихся каучуках. Поэтому следует полагать, что причина их изменения одна и та же — «сшивающее»-действие кристаллических областей.

В предварительно нагруженном полимере в момент завершения сегментальной релаксации любым полимер-гомологом происходит скачок деформации, относительная величина которого пропорциональна массовой доле этого гомолога в полимере. В таком случае в любом полимере переходная область его термомеханической кривой является огибающей для скачков деформации всех присутствующих в полимере гомологов, т.е. переходная область ТМК может рассматриваться как прообраз интегральной кривой его ММР, поскольку является результатом равновесных изменений деформации.

Увеличение Гст с давлением, конечно, связано с уменьшением свободного объема, снижением скорости сегментальной подвижности и увеличением та. В изотермических условиях с повышением Р время сегментальной релаксации возрастает за счет увеличения энергии активации и уменьшения энтропии активации, вследствие уменьшения свободного объема. Ниже Гст в стеклообразном состоянии вследствие изотермической сжимаемости стекол под давлением зависимость энергии активации от" давления описывается уравнением

Процесс сегментальной релаксации, протекающий при переходе полимера из неравновесного состояния в равновесное, может наблюдаться в различных условиях опыта. Если система приведена в неравновесное структурное состояние в отсутствие внешних силовых воздействий, то наблюдается структурная релаксация, сопровождающаяся изменением функций состояния.

Линейная зависимость А\ от (Г/г)0'8 при больших Т/ц (рис. XI. 20) свидетельствуют о выполнении условий теоретической модели. Резкое отклонение от линейности указывает на невыполнение условия быстрого анизотропного вращения метки. Экстраполируя 2Ли и 2Лх к Г/г = 0, находят 2Лц, 2Л± и параметр 5. Время сегментальной релаксации находят_по теоретически рассчитанной зависимости параметра \\\ = 2А\\ — — 2 Л я от тсегм для нескольких значений параметра 5.

Таблица XI.2. Времена сегментальной релаксации и




Составляют соответственно Состояниях полимеров Состояния материала Симметрии поскольку Состояния возникающего Состояние гибридизации Состояние определяется Состояние представляет Состояние соответствующее

-
Яндекс.Метрика