Главная --> Справочник терминов


Сольватной оболочкой Реакции нуклеофильного замещения проводят в растворах, поэтому выбору растворителя придается большое значение. Влияние растворителя на протекание и механизм реакций нуклеофильного замещения в значительной степени зависит от его сольватирующей способности и особенно от способности к специфической сольватации, приводящей к образованию водородных связей и донорно-акцепторных комплексов.

3. Повышение сольватирующей способности растворителя, стабилизирующего отщепляющийся анион. Без такой сольватации нукле-офильное замещение не происходит. В растворителях типа диметил-

Изменение сольватирующей способности растворителя может изменить не только вклад механизмов SN\ и 5^2, но и соотношение ско-

Чем полярнее переходное состояние, тем оно более соль-ватировано. С другой стороны, сольватация зависит от сольватирующей способности растворителя, связанной с его диэлектрическими свойствами и поляризуемостью. При изучении реакций типа SNz можно выделить два механизма влияния растворителя. Если атакующая частица представляет собой ион, то в переходном состоянии ее полярность снижается, поскольку Ъна передает часть своего электронного заряда группе X

Для ионной полимеризации характерно существование устойчивых ионных пар (растущий карбкатион или карбанион и соответственно противоанион или противокатион катализатора). Стабильность и структура таких ионных пар зависит от сольватирующей способности растворителя. При сильной сольватации ионы могут быть изолированы друг от друга.

В последние годы все чаще предпринимаются попытки увязать стереоспецифичность полимеризации с конформацией образующейся молекулярной цепи полимера. Макромолекулы изотактических полимеров в растворе могут существовать в виде спирали или беспорядочного клубка. Наиболее благоприятными условиями образования спирали являются низкая температура и плохой растворитель. При высокой сольватирующей способности растворителей и повышенной температуре образование спирали затруднено. Известно, что конформация молекулярной цепи природных полимеров, например нуклеиновых кислот (см. с. 364), играет определяющую роль в стереонаправленности их биосинтеза. Макромолекула может свернуться тз спираль только при строго определенном расположении в ней элементарных звеньев. После того как в каком-то участке образовалась спираль, она может оказывать направляющее влияние на порядок присоединения последующих эле-ментарных звеньев.

Основной же факт падения скорости нитрования всех трех изученных соединений при изменении концентрации серной кислоты от 90 до 100% и последующий роет скорости при дере* ходе к олеуму авторы объясняют изменением при этом диэлектрической постоянной растворителя и связанным с этим изменением его сольватирующей способности. Авторы считают, что при нитровании в момент переходного состояния происходит распространение заряда, сконцентрированного в ни-троний-ионе, на ароматическое ядро. Поэтому уменьшение диэлектрической постоянной растворителя, которое, по предположению авторов, происходит из-за образования ионов •при добавке воды или серного ангидрида к 100%-ной серной кислоте, действительно должно увеличить скорость нитрования при переходе как от 100 к 90%-ной серной кислоте, так и при увеличении содержания серного ангидрида в олеуме.

Для моноалкилацетиленов и особенно для диалкилацетиленов характерно присоединение галогеноводородов в средах умеренной полярности и сольватирующей способности по Ad? -механизму. Гидрохлорирование гексина-3 в уксусной кислоте приводит к преобладающему образованию т/лзнс-аддукта (40%) в смеси с незначительным количеством г/ис-аддукта (7%) и большим количеством гексаиона-3:

Активные центры при ионной полимеризации состоят их растущего иона (К+ или К") и противоиона {А- или В*). Стабильность н структура ионной пары зависят от их свойств и сольватирующей способности растворителя; при сильной сольватации ионы могут быть изолированы друг от друга. Различают три основные формы существования ионов в растворе.

3. Повышение сольватирующей способности растворителя, стаби-

Изменение сольватирующей способности растворителя может из-

Явление «обращения активностей» мономеров Короткое [11] объяснил тем, что в углеводородной среде активный центр экранируется «сольватной оболочкой бутадиена» и оказывается малодоступным для молекул стирола до тех пор, пока не исчерпается

Другим внешним фактором, также играющим существенную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным: например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает куло-новские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-дипольное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обозначают термином «сольватация», приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой.

Макромолекулы полярных полимеров, находящиеся в слабо-полярном растворителе, непрерывно изменяют свою форму, приближаясь к равновесному состоянию—вытянутой цепочке. Это объясняется слабым взаимодействием молекул растворите,'!я с макромолекулами полимера, отсутствием сольватных оболочек и возникающим вследствие этого взаимным отталкиванием одноименно заряженных полярных групп макромолекул. Чем выше полярность структурных звеньев, тем больше вытягиваются цепи макромолекул и уменьшается число их конформациий. В наибольшей степени это явление наблюдается в полимерах, содержащих ионогенные группы, т. е. в полимерах, относящихся к классу полиэлектролитов (полимерные кислоты или полиамины). С повышением полярности растворителя возрастает сила взаимодействия его молекул с отдельными звеньями макромолекул полярного полимера. Это приводит к образованию сплошной соль-ватной оболочки вокруг макромолекулы и уменьшению взаимного отталкивания ее звеньев, что увеличивает подвижность цепей. Макромолекулы полярного полимера, защищенные сольватной оболочкой, могут принять спиралевидные формы, приблизиться

Природа растворителя является еще одним важнейшим внешним фактором, влияющим на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя и первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным: например, переход от неполярного растворителя (гексана) к полярному (ацетонитрил у) уменьшает силы кулонов-ского взаимодействия в 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд- дипольных взаи-•модействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию 'заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой,

Природа растворителя является еще одним важнейшим внешним фак-'тором, влияющим на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный раство-ригель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть довольно значительным: например, переход от неполярного растворителя (гексана) к полярному (ацетонигрилу) уменьшает силы кулонов-ского взаимодействия в 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой,

сольватной оболочкой, время жизни которой настолько велико,

находится в тепловом равновесии со своей сольватной оболочкой.

Если химическую реакцию провести сперва в газовой фазе, а затем в растворителе, или вначале в растворителе 1, а затем в растворителе 2, то положение равновесия окажется разным. Молекулы или ионы веществ при растворении окружаются сольватной оболочкой из молекул растворителя, и в конечном случае образуется составной сте-хиометрический комплекс из растворенного вещества А и растворит

Частицу (2) называют внутренней ионной парой (контактной ионной парой), она имеет сольватную оболочку. Частица (3) — внешняя ионная пара (сольватно-разделенная ионная пара), также с сольватной оболочкой, однако некоторые молекулы растворителя находятся между ионами. Наконец, (4) и (5) представляют собой независимые друг от друга ионы, каждый со своей сольватной оболочкой [1.5.8],

Природа растворителя является еще одним важнейшим внешним фактором, влияющим на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть довольно значительным: например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулонов-ского взаимодействия в 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой.

Ацетоновые растворы кремниевых кислот (АРК) используют в качестве связующих при изготовлении из маршаллита (песка) литейных форм по выплавляемым моделям. АРК являются многокомпонентной системой, состоящей из коллоидной кремневой кислоты, ацетона и водосолевого раствора. Получают их нейтрализацией раствора силиката натрия соляной кислотой [138]. При нейтрализации происходит гидратация кремнекисло-родных цепей. При введении ацетона гидратная оболочка поликремниевых кислот, видимо, замещается сольватной оболочкой ацетона, а при добавлении NaCl происходит высаливание и выделение кремниевых кислот в ацетоновую фазу. В свежем АРК мицеллы имеют шарообразную форму, при старении АРК происходит уменьшение концентрации поверхностных ОН-групп кремнезема, сопровожающееся полимеризационно-поликонден-сационным процессом. Все это вызывает потерю раствором вяжущих свойств.




Скелетного никелевого Существуют значительные Сульфамидные препараты Сульфенамидные ускорители Сульфирования нитрования Сульфирование нитрование Сульфировании ароматических Сульфитная целлюлоза Сульфогруппа становится

-
Яндекс.Метрика