Главная --> Справочник терминов


Сопротивление истиранию Текучесть системы зависит от вязкости вещества, характеризующей ее внутреннее трение и сопротивление деформированию. Вязкое течение можно рассматривать как направленную самодиффузию под действием поля механических напряжений. Вязкость различных систем меняется в пределах от долей санти-пуаза до 1013 П при переходе из жидкого в стеклообразное состояние*.

Изучение особенностей течения полимеров имеет большое практическое значение для технологии процессов переработки их в изделия. Полимеры оказывают сопротивление деформированию в

Полимер оказывает сопротивление деформированию вследствие наличия межмолекулярного взаимодействия, а также вследствие изменения конформации макромолекул. Все силы, действующие при этом на элементарный объем, мысленно выделенный в полимере, могут быть сведены к системе сил так, как это показано на рис, 107, Если плоскость А движется в направлении, указанном стрелкой, относительно плоскости ?, то на гранях элементарной! кубика возникают касательные напряжения от, вызывающие егс скашивание, В полимерах, отличающихся высокоэластичностьтой при сдвиге кроме касательных возникают и нормальные па пряже; пия, направленные перпендикулярно граням элементарного кубика. Для осей координат применяются цифровые обозначения, сосюя-щие из двух подстрочных индексов, первый из этих индексов ука-

Величина С отражает внутреннее сопротивление деформированию, т. е. является модулем высокоэластичности при сдвиге.

Вязкость расплавов полимера зависит от среднемассовой молекулярной массы при низких скоростях сдвига. При высоких скоростях сдвига определяющей становится среднечисленная молекулярная масса. Поэтому при исследованиях важно сравнивать вязкости при течении двух или более полимеров при одних и тех же значениях среднечисленной или среднемассовой молекулярных масс. Есть достаточно сведений о том, что вязкость расплавов полимеров повышается с расширением молекулярно-массового распределения. Естественно, полимеры различного химического строения по-разному сопротивляются деформированию. Например, сопротивление деформированию больше у полимеров, содержащих ароматические кольца в основной цепи, чем у полимеров с линейными углеродными цепями.

Из уравнения (2.2) следует, что для уменьшения усилия резания необходимо уменьшить сопротивление каучука разрушению, угол заострения лезвия ножа и коэффициент трения. Значительно уменьшить угол заострения нельзя, так как при малых углах ослабляется режущая кромка. Коэффициент трения материала о боковую поверхность ножа можно снизить (но тоже в определенных пределах), повышая чистоту обработки лезвия. Следовательно, нужно добиваться снижения Q и N, величина которых зависит от типа каучука и его физического состояния. Сила Q пропорциональна модулю упругости каучука первого рода Е, а сила N — модулю упругости каучука второго рода G. Модули упругости характеризуют прочность каучука и сопротивление деформированию. Численные значения их меняются в широком диапазоне в зависимости от типа, степени кристалличности и температуры каучука. С повышением температуры каучука, по мере перевода его из кристаллического состояния в аморфное, модули упругости существенно понижаются. Вот почему перед резанием каучук желательно разогревать. В этом случае усилие резания снижается и отпадает необходимость конструирования мощного оборудования. Величина удельного усилия резания разогретого натурального каучука находится в пределах 1000 — 3000 Н/см. При разрезании закристаллизованного (стеклообразного) каучука величина удельного усилия резания резко возрастает и доходит до 10 кН/см, Поэтому во избежание поломки оборудования

Полимер оказывает сопротивление деформированию вследствие наличия межмолекулярного взаимодействия, а также вследствие изменения конформации макромолекул. Все силы, действующие при этом на элементарный объем, мысленно выделенный в полимере, могут быть сведены к системе сил так, как это показано i рис, 107. Если плоскость А движется в направлении, указ; стрелкой, относительно плоскости Б, то на гранях элементарно! кубика возникают касательные напряжения от, вызывающие егс скашивание. В полимерах, отличающихся высокоэластичностью при сдвиге кроме касательных возникают и нормальные напряж* пия, направленные перпендикулярно граням элементарного кубика.'! Для осей координат применяются цифровые обозначения, сосюя-1 щие из двух подстрочных индексов, первый из этих индексов ука- ^

1) разрывы пространственной сетки, образованной макромолекулами ц пачками, что понижает сопротивление деформированию. При растяжении и простом сдвиге роль процессов ориентации структурных элементов и разрушения надмолекулярных образова-HHi'r в полимерных системах различна. В условиях растяжения более важную роль может играть ориентационньш эффект; при сдвиге, когда особенно легко осуществляется значительное относительное перемещение соседних макромолекул и различных надмолекулярных образований и непрерывно совершается их вращение большое значение приобретают процессы разрушения про-страЕ1стве[[1[Ой сетки.

Полимер оказывает сопротивление деформированию вследств} наличия межмолекулярного взаимодействия, а также вследстР! изменения конформации макромолекул. Все силы, действуют! при этом на элементарный объем, мысленно выделенный в по.и мере, могут быть сведены к системе сил так, как это показано i рис. 107. Если плоскость А движется в направлении, указанно стрелкой, относительно плоскости Б, то на гранях элементарно! кубика возникают касательные напряжения от, вызывающие ei скашивание. В полимерах, отличающихся высокоэластичносты при сдвиге кроме касательных возникают и нормальные напряж пия, направленные перпендикулярно граням элементарного кубнк Для осей координат применяются цифровые обозначения, сосю щие из двух подстрочных индексов, первый из этих индексов ук

1) разрывы пространственной сетки, образованной макромолекулами ц пачками, что понижает сопротивление деформированию. При растяжении и простом сдвиге роль процессов ориентации структурных элементов и разрушения надмолекулярных образова-Huit в полимерных системах различна. В условиях расгяжения более важную роль может играть ориентационньш эффект; при сдвиге, когда особенно легко осуществляется значительное относительное перемещение соседних макромолекул и различных надмолекулярных образований и непрерывно совершается их вращение большое значение приобретают процессы разрушения про-страЕ!ствея![Ой сетки.

При скоростях сдвига, превышающих критическую скорость для высокомолекулярного компонента, обусловленные им диссипативные потери снижаются, и сопротивление деформированию смеси начинает расти замедленно. Кривая течения становится вогнутой в сторону оси скоростей сдвига. Следует обратить внимание на асимптотический характер достижения срыва всей смеси до того, как будет превзойдена критическая скорость сдвига менее вязкого компонента смеси.

Описано катализируемое соединениями платины присоединение замещенных силанов, имеющих связь Si—Н, и радикальная прививка непредельных силанов, позволяющие получить реакцион-носпособные полимеры, отверждаемые, например, на холоду, со-гидролизуемые с галогенсиланами и т. д. [58]. Перспективы получения на основе углеводородных полимеров с силоксановыми боковыми цепями эластомеров с ценными свойствами (тепло- и морозостойкость, сопротивление истиранию и др.) иллюстрируются свойствами уже изученных смесей каучуков общего назначения с небольшими (5—10%) добавками силокеановых полимеров [59, 60].

Сопротивление истиранию, мм3

формирования и разрушения порошкообразных катализаторов показало, что при работе в псевдоожиженном слое важна не обычно определяемая прочность катализатора на раздавливание, а его сопротивление истиранию [19].

Отличительной особенностью уретановых каучуков является исключительно высокое сопротивление истиранию. По этому показателю уретановые каучуки значительно превосходят не только все типы каучуков, но и многие металлы.

К недостаткам можно отнести низкую прочность, неудовлетворительное сопротивление истиранию и раздиру, повышенную газопроницаемость, нестойкость в среде нефтепродуктов. Подвергаются деструкции при нагреве выше 150 °С без воздуха.

Фторсилоксановый каучук (СКТФ) по физико-механическим свойствам, термостойкости и морозостойкости близок к силоксано-вым каучукам. Химическая структура СКТФ определяется замещением диметилсилоксановых звеньев фтором, что придает СКТФ при высокой термостойкости, свойственной силоксанам, повышенную стойкость к действию растворителей. Прочность фторсилокса-новых резин при наполнении кремниевой кислотой достигает 7 МПа, набухание в нефтепродуктах в 8-10 раз меньше, чем у силоксановых резин, а в синтетических жидкостях типа фосфатов — до 15 раз. Резины на основе СКТФ являются маслобензостойкими. Подобно резинам из силоксановых каучуков они технологичны, но недостаточно жестки, имеют плохое сопротивление истиранию, раздиру, знакопеременной нагрузке.

СКЭП-60-56-65, которые вулканизируют органическими пероксида-ми. СКЭПТ содержит в своем составе третий мономер, что обеспечивает возможность вулканизации обычными серными системами. Резины на основе этилен-пропиленовых каучуков имеют высокие сопротивление истиранию и старению, а также озоно-, атмосфере-, водо-, тепло- и морозостойкость. Им присуща высокая прочность и эластичность. Недостатки — низкая адгезия, плохая совместимость с другими каучуками, низкая стойкость к маслам и топливам.

В качестве показателей износостойкости в серийных марках резин используют сопротивление истиранию по методу Грассели (ГОСТ 426-77) (по потере объема образца, прижатого с заданным усилием к истирающей поверхности вращающегося диска, представляющего собой шлифовальную шкурку).

Большинство методик испытания материалов на истирание являются сравнительными. Это значит, что истираемые при одинаковых условиях количества резины сравнивают друг с другом. Для того, чтобы иметь единицу сравнения, устанавливают потерю массы образца резины определенного качества и принимают ее за 100. Если при таком сравнении полученное число больше 100, то истирание большое. Соответственно сопротивление истиранию меньше, чем у стандартного образца. Истирающая способность наждака стандартизирована так, что, например, стандартный образец на 40 м пути истирается на (200±20) мг. Согласно стандарту США, подсчет работы истирания не производится. Вместо этого сравнивают истираемости испытываемой смеси с одной из стандартных смесей. Механизм истирания резин в различных испытательных машинах различен. Поэтому наряду со стандартными испытаниями резины на истирание в лабораторных испытаниях применяют иногда нестандартные методы, выбирая такую машину, которая соответствовала бы условиям работы резинового изделия.

Для исследования истирания протекторных шин используется, например, прибор Ламбурна, имитирующий условия работы ведущих колес автомобиля. При этом образцы в форме дисков устанавливаются на ведущем валу прибора и прижимаются к абразивному диску. Прибор позволяет регулировать скольжение образцов и определять энергию, затрачиваемую на истирание. Было установлено, что рисунок протектора покрышек заметно уменьшает истирание резины в эксплуатации. Рассмотрение явления истирания резины при движении по неровной поверхности показало, что сопротивление истиранию зависит от трения, прочности материала и его динамической твердости.

Основными показателями технических свойств каучука, которые определяются путем испытания вулканизатов, являются следующие: предел прочности при растяжении, эластичность, сопротивление истиранию, сопротивление разрушению при многократных деформациях, температуростойкость и теплостойкость, морозостойкость, водо- и газонепроницаемость, диэлектрические свойства, маслостойкость, химическая стойкость, стойкость к действию кислорода и озона.




Смазочных материалов Смешанные полиамиды Смешанных комплексов Смешанными ангидридами Смешанного ангидрида Смешанном растворителе Смешиваемых полимеров Смешивающихся жидкостей Смеситель непрерывного

-
Яндекс.Метрика