Главная --> Справочник терминов


Температуры максимума Сделать массу более жидкой можно двумя путями: повысить температуру в реакционной зоне до расплавления кристаллов или увеличить мольное соотношение фэнола к ацетону. Первый путь нежелателен из-за увеличения выхода побочных продуктов и ухудшения качества дифенилолпропана^ что будет показано ниже. Шолее целесообразен второй путь — увеличение мольного соотношения, так как при этом не только обеспечивается хорошая подвижность массы, но получаются почти теоретические выходы качественного продукта за короткое время. Изменение температуры кристаллизации в зависимости от мольного соотношения фенола к ацетону и выхода дифзнилолцропана можно иллюстрировать данными автервв-аюй книги: 'е'^'-е": '/;^ U:>'

Общепринятыми методами испытания фенола являются определение температуры кристаллизации, содержания летучих примесей и растворимости в воде. Однако для тех производств, где требуется высокая чистота исходного сырья, рекомендуется, кроме того, испытывать фенол в реакциях хлорирования27 и сульфирования . Интенсивность появляющейся при этом окраски свидетельствует о наличии вышеуказанных примесей в большем или меньшем количестве.

Технологическая схема производства фталевого ангидрида из нафталина не отличается принципиально от схемы получения фталевого ангидрида из о-ксилола (см. рис. 15). Различие заключается в том, что из-за высокой температуры кристаллизации нафталина его приходится доставлять в специальных термоцистернах и хранить в обогреваемых емкостях, либо при поставке в кристаллическом виде включать в схему аппарат для плавления. Во фталевом ангидриде, получаемом при окислении нафталина в сырце присутствует 0,5—5,0% 1,4-нафтохинона. Поэтому здесь чаще применяют очистку термической обработкой в присутствии серной кислоты или других добавок.

Определение температуры кристаллизации является одним из наиболее важных методов оценки чистоты ароматических углеводородов. Он является основным при оценке качества бензола, нафталина, а также всех полициклических ароматических углеводородов. В связи с влиянием влаги на определение температуры кристаллизации необходима соответствующая подготовка пробы, например, бензол специально насыщают влагой. Температуру кристаллизации рассчитывают по формуле:

где tKp и ? — действительная и найденная температуры кристаллизации; 0,09 — поправка, учитывающая понижение температуры кристаллизации бензола за счет растворенной в нем влаги (по ГОСТ 2706.12—74).

Используется автоматическая запись температуры кристаллизации бензола: температура измеряется с помощью термометра сопротивления. За температуру кристаллизации принимают точку на кривой, записанной регистратором, соответствующую макси-

на (в % ) в зависимости от температуры кристаллизации и состава исходной антраценовой фракции можно рассчитать из следующего уравнения [76, 78]:

Физические методы оказались непригодными для сколько-нибудь глубокого выделения тиофена из бензола. Ни обычная ректификация на чрезвычайно эффективной колонне (около 110 теоретических тарелок) [8], ни различные варианты азеотропной и экстрактивной ректификации [9] не позволяют с приемлемыми выходами получать бензол с минимальным содержанием тиофена. Способность тиофена образовывать с бензолом смешанные кристаллы [10] препятствует разделению обычной кристаллизацией, несмотря на то, что температуры кристаллизации их различаются на 36 °С. Не дает хороших результатов и фракционированная кристаллизация [И]. Близость адсорбционных свойств тиофена и ароматических углеводородов делает невозможным их разделение на обычных адсорбентах [12].

Выделение дурола из смеси изомеров основано на существенном различии температуры кристаллизации его и других полиал-килбензолов. Вследствие малой концентрации дурола в промышленных потоках первоначально сырье обогащают — обычно ректификацией.

Расход кислоты, % Повышение температуры кристаллизации, °С Степень удаления тионафтена, % Потери нафталина, %

— температуры кристаллизации 141 ел. Очистка

На основании (9.5) и (9.6) получим соотношение для определения температуры максимума Гтах интенсивности свечения в следующем виде:

(ОЭА) изменяется незначительно, а происходит лишь изменение температуры максимума. Поэтому в данном случае можно считать, что происходит смещение максимума, описывающего «элементарный» процесс, в область более высоких температур. Этот процесс характеризуется наиболее вероятным временем релаксации, следовательно, энергия активации, определенная методом различных скоростей разогрева, не зависит от распределения времен релаксации.

Успешное использование этого соотношения при обработке экспериментальных данных по температурным зависимостям внутреннего трения частично-кристаллического полиоксиметилена (ПОМ) свидетельствует о его справедливости. Приняв за Тс значение температуры максимума первичного стеклования ПОМ, получаем, что отношение Гс/^пл = 260 К/390 К равно точно 2/3. Однако тот факт, что потеря подвижности сегментов в некристаллической части полимера происходит в широком интервале температур, показывает, что нужно внести уточнение в терминологию переходов и рассматривать процессы, протекающие либо при нагревании полимера (размягчение, плавление), либо при его охлаждении (кристаллизация, стеклование). При этом уравнение КББ выполняется абсолютно точно. Наличие достаточно широких температурных интервалов этих переходов определяет необходимость искать пути установления более точных средних значений Гпл и Тс или отказаться от однозначного значения коэффициента пропорциональности между Гпл и ГСт, равного 2/з, а записывать его в виде const, значение которой для разных полимеров будет отличаться. Можно записать следующие соотношения: Гразм=' = const-Гпл; Тс = const -7кр (здесь Гра3м — температура размягчения). При этом Гпл^^кр, ТразмфТсг. Из рис. 10.22 следует, что для натурального каучука Т1Ш>Ткр, Гпл = ГПлшах—7\шш1п.

р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнаружено зависимости температуры максимума р-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Гр, причем авторы этих работ считают возможным по изменению Гр контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН(ОН)—СН2— основной цепи молекулы [67], то повышение Т$ может быть связано с общим уменьшением подвижности цепи при увеличении плотности сшивания. Релаксационные у- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области.

го приводит к повышению температуры максимума потерь

р-Переходы также представляют собой, как правило, сложные процессы и их отнесение еще более затруднено. Для эпоксидных смол они исследованы более подробно [1, 66], однако полученные данные не позволяют сделать общих заключений. В ряде работ [61, 66—68] не обнаружено зависимости температуры максимума р-перехода от концентрации узлов сетки. В то же время, по данным работ [25, 69], увеличение плотности сшивания эпоксидного полимера за счет уменьшения молекулярной массы олигомера или функциональности амина приводит к значительному увеличению Т$, причем авторы этих работ считают возможным по изменению Гр контролировать степень отверждения полимеров, так как этот максимум лежит в области стеклообразного состояния, и при его определении не вызывает доотверждения полимера, которое происходит при нагревании недоотвержденного полимера выше температуры стеклования. Если правильно указанное выше отнесение р-перехода к движению оксиэфирного фрагмента —О—СН2—СН(ОН)—СН2— основной цепи молекулы [67], то повышение Гр может быть связано с общим уменьшением подвижности цепи при увеличении плотности сшивания. Релаксационные у- и р-переходы слишком сложны и мало исследованы, чтобы можно было делать какие-либо общие заключения, однако они дают информацию о молекулярном движении в стеклообразном состоянии и в значительной степени определяют характеристики эпоксидных полимеров в этой области.

с = 345, а для пленок на основе смолы Э-45 Мс = 524). } приводит к повышению температуры максимума потерь ,кс и Тс полимера.

Рис. 1.26. Зависимость температуры максимума tg 6 от содержания отвердителя:

Рис. I. 28. Зависимость величины смещения температуры максимума tg A от продолжительности отверждения:

Увеличение степени кристалличности приводит к повышению температуры максимума дипольно-сегментальных потерь, т. е. к увеличению наиболее вероятного времени релаксации, при этом температурный коэффициент времени релаксации, т. е. энергия активации, практически не изменяется. Изменения Тмакс дипольно-групповых потерь при увеличении степени кристалличности носят случайный характер. У некоторых полимеров кристаллизация не влияет на 7макс дипольно-групповых потерь, у других приводит к небольшому повышению ГМакс, а у политри-фторхлорэтилена, наоборот, — к понижению Гмакс. Особенно сильно влияет степень кристалличности на уменьшение фактора диэлектрических потерь в области дипольно-сегментальной релаксации. Так, у полиэтилентерефталата с изменением степени кристалличности от 0 до 60% е^акс дипольно-сегментальных потерь уменьшается в 4 раза, а е^'акс дипольно-групповых потерь — всего в 1,6 раза. Увеличение степени кристалличности вызывает резкое уменьшение параметра распределения по временам

Рис. 43. Зависимость температуры максимума дипольно-сегментальных потерь и температуры стеклования (а), а также энергии активации и фактора диэлектрических потерь в области максимума (б) от молекулярной массы для поливинилацетата:




Температура концентрация Температура материала Тщательно протирают Температура нитрования Температура окружающей Температура перегонки Температура поднялась Температура понижается Температура предварительного

-
Яндекс.Метрика