Главная --> Справочник терминов


Температуры способствует Увеличение температуры сопровождается учетверением числа свободных радикалов в момент макроскопического разрушения. Во-первых, как уже отмечено, прочность связи в таком случае убывает и таким образом облегчается разрыв цепей при данном молекулярном напряжении. Во-вторых, уменьшение межмолекулярного притяжения и увеличение подвижности молекул вызывает более быструю релаксацию молекулярных напряжений. По той же причине, в-третьих, плотность накопленной энергии упругой деформации при данной величине деформации убывает, что в свою очередь будет влиять на стабильность и распространение трещин. В-четвертых, возросшая реакционная способность свободных радикалов может увеличить несоответствия между концентрациями образованных свободных радикалов и обнаруженных радикалов в момент ослабления материала.

нетические переходы (стеклование — размягчение), а для кристаллических полимеров — фазовые переходы (кристаллизация — плавление). В температурной области, характеризующейся относительной подвижностью элементов структуры полимера, повышение температуры сопровождается увеличением подвижности звеньев цепных молекул, увеличением ориентационной поляризации и уменьшением ?цр.

нагревание реакционной смеси до комнатной температуры сопровождается их

высокой температуры сопровождается увеличением вязкости

Пластифицированная дисперсия неморозостойка, поэтому в зимний период ПВАД и пластификатор перевозят и хранят раздельно, что увеличивает транспортные расходы и требует применения специального оборудования для пластификации дисперсии перед употреблением. Введение в дисперсию 0,2—0,5% (масс.) малеинового ангидрида с последующим прогревом композиции ' в течение 2 ч при 68—72-0С позволяет получать морозостойкую пластифицированную ПВАД [67]. Стойкость дисперсии к замораживанию обусловливается образованием кислого эфира ПВС и малеиновой кислоты, улучшающего поверхностно-активные свойства защитного коллоида. Нагревание композиции до более, высокой температуры сопровождается увеличением вязкости ПВАД, вплоть до перехода ее в пастообразное состояние.

Как будет показано в дальнейшем, повышение температуры при прочих равных условиях, всегда сопровождается уменьшением прочности вследствие увеличения частоты флуктуации тепловой энергии, сопровождающегося разрывом связей, несущих нагрузку. Наблюдаемая немонотонная зависимость — серпантин на кривой вр = f (Т) — обусловлена тем, что в определенном интервале температур повышение температуры сопровождается не только увеличением частоты флуктуации теплиной энер-гии, но и ускорением релаксационных процессов, сопровождающихся увеличением степени ориентации элементов структуры в полимерном теле.

Последние ввели в представления о механизме разрушения такие понятия, как энергетический барьер (на основании представлений Эйринга). Применительно к нехрупкому разрыву полимеров представления о фтуктуационном механизме разрыва связей были сформулированы В. Е. Гулем, Н. Я- Сидневой и Б. А. До-гадкиным [15, с. 422]. Эти авторы в 1951 г. писали, что «деформирующая нагрузка распределяется по цепям главных химических валентностей и межмолекулярным связям, обусловленным силами Ван-дер-Ваальса. Последние неустойчивы и разрушаются, как только кинетическая энергия теплового движения для данной кинетической единицы превысит потенциальную =>н?рг"ю МРУГ— молекулярного взаимодействия... Повышение температуры сопровождается увеличением кинетической энергии звеньев цепных молекул и приводит к возрастанию числа межмолекулярных связей, разрушенных и восстановленных в новом месте. Другими словами, с повышением температуры уменьшается число межмолекулярных связей, несущих нагрузку... Возрастание значений деформирующих нагрузок должно приводить к уменьшению времени существования таких связей в соответствии с известной зависимостью

Температурная зависимость характеристик прочности полимеров в общем случае немонотонна. Повышение температуры сопровождается уменьшением прочности. Однако для большинства полимеров существует температурный интервал аномалии прочности полимеров. Этот температурный интервал соответствует увеличению степени дополнительной ориентации материала перед

В области температур, где при заданной скорости нагружения понижение температуры сопровождается уменьшением степени ориентации материала в месте распространения разрыва, прочность с понижением температуры будет не увеличиваться, а уменьшаться. Во всех остальных температурных областях понижение температуры сопровождается увеличением прочности.

Температурная зависимость электрической прочности также аналогична температурной зависимости механической прочности (см. рис. V.19): обе прочностные характеристики изменяются с понижением температуры немонотонно, проходя через максимум (ср., например, с. 108, 157 и 255). Предлагаемое объяснение немонотонной зависимости электрической прочности при низкой температуре сводится к тому, что при фиксированном положении элементов структуры (стекло) повышение температуры сопровождается увеличением рассеивания электронной лавины и повышением электрической прочности. В температурной области, характеризующейся относительной подвижностью элементов структуры, повышение температуры сопровождается увеличением подвижности звеньев цепных молекул, увеличением ориентации перед разрушением и увеличением электрической прочности. После того, как способность упрочняться за счет ориентации полностью реализуется, дальнейшее повышение температуры будет сопровождаться уменьшением прочности.

У кристаллических полимеров повышение температуры сопровождается ослаблением межмолекулярного взаимодействия вследствие возрастания расстояний между соседними макромолекулами.

Температура влияет на скорость процесса и молекулярную массу сополимера. С повышением температуры возрастают скорости роста и обрыва молекулярных цепей. Повышение температуры способствует увеличению вероятности протекания нежелательных вторичных реакций — разветвления и структурирования, что отражается на пласто-эластических свойствах полимера.

3. Полимеризация при высоких температурах порядка 130—• 160 °С [31]. Повышение температуры способствует сближению констант сополимеризации бутадиена и стирола [9], однако даже при 130—160 °С этот эффект не столь значителен, чтобы таким приемом исключить полное образование блоков полистирола.

Снижение температуры способствует конденсации части тяжелых углеводородов в самой скважине, в результате чего из скважины поступает более сухой газ.

Снижение температуры способствует конденсации части тяжелых углеводородов в самой скнажинс, в результате чего из скважины поступает более сухой газ.

В ряде случаев с повышением температуры может увеличиваться скорость нежелательных побочных реакций (например, циклизации вместо линейного роста цепи), поэтому к температурному воздействию как фактору ускорения реакции следует подходить очень осторожно. Часто снижение температуры способствует образованию линейных полимеров.

В присутствии катализаторов Фриделя — Крафтса ацилгало-гениды присоединяются ко многим олефинам. В реакцию вводились олефины с прямой цепью, а также разветвленные и циклические олефины, но лишь небольшое число субстратов, содержащих функциональные группы иные, чем галоген [539]. Механизм этой реакции аналогичен механизму реакции 15-34, и здесь тоже конкурирует реакция замещения (т. 2, реакция 12-14). Повышение температуры способствует увеличению доли продукта замещения [540], а хорошие выходы продуктов присоединения достигаются лишь тогда, когда температура поддерживается ниже 0°С. Сопряженные диены в эту реакцию обычно не вступают из-за доминирующей полимеризации. Реакцию можно провести и с ацетиленовыми соединениями, в результате чего получаются продукты состава RCO—С = С—С1 [541]. Формиль-

Опыт эксплуатации этих установок показал, что оборудование их в большей степени подвергается коррозии, чем при раздельной очистке и осушке. Объясняется это тем, что комбинированный раствор требует более высокой температуры для регенерации, чем, например, водный раствор моноэтаноламина, а повышение температуры способствует интенсификации коррозионных процессов.

а также от строения самого эфира. На многочисленных примерах доказано, что повышение температуры способствует перегруппировке в орто-положение и, наоборот, при низкой температуре образуется преимущественно пара-изомер.

1) температура смеси (повышение температуры способствует сепарации):

Ограниченное набухание линейных полимеров можно объяснить тем, что энергия взаимодействия цепей между собой больше энергии их взаимодействия с молекулами растворителя, вследствие чего цепи полностью не отделяются. Повышение температуры способствует нарушению связен между цепными молекулами, и ограниченное набухание переходит в неограниченное. Примером можсг служить набухацие желашта в воде. Между белковыми молекулами желатина имеются прочные связи, которые при комнатной температуре взаимодействие с подои не может полностью нарушить, и желатин набухает ограниченно. Лишь при нагревании до 35—40°С образуется гомогенный раствор.

тура napoo в верхней части колонки была не ниже 60—70° При правильной установке насадки и иадлежа тем регулировании нагревания реакционной смеси аце той перегоняется вместе с нзопропиловым спиртом со скоростью 5—10 капель в минуту Если соединение трудно восстанавливается, скорость перегоикк должна быть еще меньше Необходимо следить, чтобы объем смеси оста валсл приблизите чьно постоянным, если отгоняется слишком много растворителя, то объем жидкости попол IIяют, добавляя новую порцию растворителя Время от времени проверяют дистиллат на содержание ацетона при помощи раствора 2,4-дннитрофеинлгидразниа. Отрицательный результат свидетельствует об окончании реакции После этого ит смесн отгоняют при пониженном давлении почти весь нзопропиловый спирт, а нахо дящнеся в остатке комплексные соединения алюминия разлагают разбавленной кислотой (обычно серной) ичи едким натром Продолжительность реакции неодинакова для различных соединении — от нескольких десятков минут до нескольких десятков часов; ее можно сокра тить, применяя растворитечь с более высокой температу рей кипения, например толуол или ксилол, в которых алкоголят хорошо растворяется. Однако применение чтих растворителей не всегда выгодно, так как повышение температуры способствует побочным реакциям Поэтому указанные растворители используются только в тех случаях, когда восстановление длится более 24 час Методика восстановления в присутствии углеводородного растворителя почти ничем не отличается от способа, рассмотренного выше После нескольких часов нагревания раствора карбонильного соединения и ялкоголята в углеводородном растворителе прибавляют небольшое количество ичопропнлового спирта, который облегчает удаление ацетона. После разложения соединений алюминия продукт реакции восстановления переходит в углеводородный слой




Температура замерзания Температуре абсорбции Температуре фильтруют Температуре количество Тщательно соблюдать Температуре необходимой Температуре образуется Температуре окружающего Температуре перемешивают

-
Яндекс.Метрика