Главная --> Справочник терминов


Температуры структурного При температуре стеклования Тс все макромолекулы закреплены, и при дальнейшем снижении температуры структура полимера уже не меняется. Поскольку изменение объема при темпе-

Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура полимера непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц (сегментов), приводящих к изменению ближнего и дальнего флуктуационного порядка, т. е. надмолекулярной организации аморфного полимера. Скорость перегруппировок с понижением температуры умень'шается, вследствие чего при некоторой температуре, называемой температурой стеклования Тс, структура полимера фиксируется. Отсюда следует, что в данном образце застеклованного полимера структура примерно та же, что у незастеклованного полимера в области стеклования.

Некоторые исследователи считают, что процесс стеклования полимеров и неорганических стекол объясняется главным образом процессами структурирования физической природы, например в результате образования полярных узлов молекулярной сетки при понижении температуры. Вероятнее всего, процесс образования в линейных полимерах физических поперечных связей флуктуа-ционной природы является не главным, а сопутствующим процессом, приводящим к дополнительной . потере сегментальной подвижности при понижении температуры. Например, бутадиен-'нитрильные сополимеры содержат в цепи боковые полярные ни-трильные группы CN, которые способны образовывать поперечные «физические» связи между макромолекулами. Замечено, что чем больше концентрация в сополимере нитрильных групп, тем раньше происходит стеклование при охлаждении. Это явление не противоречит релаксационной теории стеклования, которая допускает, что низкомолекулярная жидкость, расплав полимера или эластомер изменяют структуру при понижении температуры. Структура,

Сущность процесса структурного стеклования заключается в следующем. С понижением температуры структура жидкости непрерывно и постепенно изменяется вследствие процессов перегруппировки кинетических единиц, приводящих к изменению ближнего порядка, степени микрорасслоения и других структурных особенностей жидкости. Скорость перегруппировок с понижением температуры уменьшается, вследствие чего в области некоторой температуры стеклования Тс равновесие в ближнем порядке практически уже не успевает устанавливаться и структура жидкости фиксируется *. Отсюда следует, что в данном стекле структура примерно такая же, как у его расплава при температуре стеклования. Жидкость можно застекловать не только путем понижения температуры, но и повышением давления. Стеклование может происходить при некотором давлении рс из-за уменьшения подвижности частиц вследствие возрастания межмолекулярного взаимодействия и уменьшения свободного объема.

Механическое стеклование определяется частотой или временем механического воздействия, а структурное —тепловым режимом (скоростью охлаждения). Опыт показывает, что оба процесса стеклования независимы и их можно экспериментально разделить. Значение Тм соответствует максимуму механических потерь (см. рис 27) а ГССТР —точке излома на кривой тепловой усадки (см. рис' 25)' Если тепловой режим охлаждения задан, то тем самым задана Тсстр При этом механическое воздействие может производиться независимо от теплового. Меняя режим механического воздействия, можно получать различные Гсме*. И наоборот, меняя скорость охлаждения, можно наблюдать различные Тс^ при постоянной температуре механического стеклования, если задана частота внешнего воздействия. Например, эластомер НК (натуральный каучук) при медленном охлаждении со скоростью ВУ= 1 К/мин стеклуется при температуре-200 К. Выше этой температуры структура полимера является равновесной, что соответствует жидкому состоянию. Подвергая НК выше этой температуры механическим воз-

изменении температуры структура жидкости изменяется практи* чески мгновенно, и удельный объем, измеренный при каждой температуре, является рзвноаесггым.

При определении вязкости следует учитывать, что равновесие в растворах полимеров достигается очень медленно. Растворы можно приготавливать или хранить при температурах, отличных ог тех, при которых измеряется вязкость. При изменении температуры структура раствора изменяется, а следовательно, изменяется вязкость, что проявляется в разных временах истечения. Чтобы получить точные значения вязкости, необходимо выдерживать растворы при заданной температуре в термостате в течение некоторого определенного времени, требуемого для установления равновесия в растворе. Истинные значения вязкости — это значения, не изменяющиеся во времени.

Для низкомолекулярных жидкостей при достаточно высоких температурам время релаксации очень мало и составляет — 10~JO сек. Поэтому при изменении температуры структура жидкости изменяется практически мгновенно, и удельный объем, измеренный при каждой температуре, является равновесным.

При определении вязкости следует учитывать, что равновесие в растворах полимеров достигается очень медленно. Растворы можно приготавливать или хранить при температурах, отличных ог тех, при которых измеряется вязкость. При изменении температуры структура раствора изменяется, а следовательно, изменяется вязкость, .—•*•"" что проявляется в разных временах истечения. Чтобы получить точные значения вязкости, необходимо выдерживать растворы при заданной темпера-

изменении температуры структура жидкости изменяется практически мгновенно, и удельный объем, измеренный при каждой температуре, является равновесным.

При определении вязкости следует учитывать, что равновесие в растворах полимеров достигается очень медленно. Растворы можно приготавливать или хранить при температурах, отличных ог тех, при которых измеряется вязкость. При изменении температуры структура раствора изменяется, а следовательно, изменяется вязкость, что проявляется в разных временах истечения. Чтобы получить точные значения вязкости, необходимо выдерживать растворы при заданной темпера-_ туре в термостате в течение некоторого определенного времени, требуемого для установления равновесия в Рис. 176 Зависимость прыне- растворе. Истинные значения вязко-денпой вязкости разбавленного сти _ это значения, не изменяющиеся расторг полимера от кончен- во времени>

Такая структура дает возможность понять причины технической прочности и низкого температурного коэфициента расширения материала. С повышением температуры структура кислородных мостиков становится менее стойкой, начинает разрываться и образуются двойные кислородно-кремнеземные связи. В определенных условиях получается мономолекулярный Si02. Но данные о вязкости и летучести кремнезема указывают на то, что эти условия достигаются только при чрезвычайно высокой температуре.

структурного стеклования Тс примерно на 50° (физический смысл температуры Тй будет рассмотрен ниже); <8$°° — постоянная, имеющая смысл энергии активации при 7!-> оо. Подстановка этого уравнения в формулу (II. 1) приводит к известному уравнению Вильям-са — Ландела — Ферри [38, с. 251], представляющему собой наиболее удобную эмпирическую форму записи принципа ТВЭ. Таким образом, энергия активации возрастает с понижением температуры слабо в области повышенных температур (Т > Тс) и сильно в области низких температур (Т <с Тс), что по-прежнему (ср. § 1) отражает температурную зависимость вязкости. Энергия активации возрастает и с увеличением давления, но с повышением давления время релаксации т возрастает только за счет увеличения энтальпии активации, так как температура считается заданной. С понижением температуры т возрастает не только благодаря увеличению энергии активации, но и непосредственно за счет уменьшения температуры. Поэтому только отношение ffJkT однозначно характеризует скорость процессов релаксации.

ления температуры структурного скоростях^ нагревания:

Температуры структурного стеклования Т0 и механического стеклования Гм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость IgE от температуры для полимера приведена на рис. II. 11. Ниже Тс полимер находится в стеклообразном состоянии и температурная зависимость lg? слабо выражена, как и у любого твердого тела вообще. Выше Тс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного сжатия в стеклообразном состоянии ?0 примерно в 103—104 раз больше, чем 'соответствующий модуль Ех в высокоэластическом состоянии.

выше температуры структурного стеклования Гс;

Получаемая таким образом информация сходна с получаемой при механических воздействиях в том смысле, что позволяет достаточно четко регистрировать по меньшей мере два из ,трех релаксационных состояний в аморфных полимерах и судить о влиянии кристалличности на релаксационные переходы в кристалли-. зующихся полимерах. (Некоторые дополнительные сведения по этому поводу см. в работах Борисовой [21, с. 34; 24, т. 2, с. 740— 754].) В то же время следует учитывать, что «электрический отклик» полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику! Поэтому-то хоти метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения, температура соответствующего максимума потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты «механического» стеклования.

Дальнейшее сужение линии ЯМР-поглощения при более высоких температурах объясняется переходом полимеров в высокоэластическое состряние. Для сравнения на рис. VIII. 2, а приведены значения температуры структурного стеклования Тс. Хорошо видно, что Т,с лежит ниже температуры Т', при которой происходит резкое сужение линии ЯМР. Это расхождение может быть объяснено тем, что эффективное сужение происходит, когда время корреляции тк становится по порядку величины равным (у8Н^)~1. Из данных рис. VIII. 2, а следует, что это значение примерно равно \0~5с. Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 град/мин показывает, что Тс нельзя

Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы в (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетиче-ская и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Тс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стекло'ванием. При охлаждении расплава полимера,вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Тс и механического стеклования 7М независимы между собой, так как первая зависит от скорости охлаждения, а вторая — от времени действия силы в или частоты упругих колебаний v.

Исследование диэлектрических свойств полимеров в широких температурно-частотных диапазонах является одним из наиболее эффективных способов установления особенностей их строения. Однако «отклик» полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен «механическому отклику». Поэтому, хотя метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения полимеров, температура максимума диэлектрических потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. Именно несовпадение релаксационных переходов, отвечающих электрическим или механическим воздействиям, по температурной или частотной шкале дает дополнительную информацию об уровнях структурной организации полимеров.

Для исследования процессов, происходящих при нагревании или охлаждении полимеров, применяются методы линейной и объемной дилатометрии. Выше температуры структурного стеклования полимер обладает «жидкой» структурой, так как ближний порядок изменяется с температурой, аналогично тому, как это имеет место в простых жидкостях. В твердом состоянии ближний порядок зафиксирован и не меняется с температурой. В области перехода из жидкого состояния в твердое (или наоборот) наблюдается резкое изменение всех теплофизических свойств полимеров. Например, при понижении температуры (при неизменном давлении) в области этого перехода происходит резкое уменьшение коэффициента термического расширения. Если данный переход происходит при понижении температуры, то он называется структурным стеклованием, а в случае повышения температуры — размягчением.

Как потом оказалось, температуры структурного стеклования ГСт и механического стеклования Та отличаются, хотя молекулярная природа структурного и механического стеклования одна и та же и связана с сегментальным движением. Причины различия между обоими видами стеклования были рассмотрены в работе автора [149]. Там же для периодических деформаций был введен термин механическое стеклование.

Из сказанного следует, что природа механического стеклования — перехода жидкости (полимера) из вязкого (высокоэластического) состояния в упругое, и природа структурного стеклования одна и та же и определяется одними и теми же процессами молекулярных перегруппировок. Однако при механическом стекловании переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше температуры структурного стеклования.




Температура затвердевания Температуре достаточно Температуре измерений Температуре наблюдается Температуре называется Температуре образовавшийся Температуре охлаждают Тщательно высушенной Температуре подняться

-
Яндекс.Метрика