Главная --> Справочник терминов


Температурой воспламенения При достаточно высоких температурах, превышающих некоторое условное значение, называемое часто температурой текучести Tf, интенсивность сегментального движения в аморфных полимерах настолько высока, что не связанные в сетку макромолекулы способны под действием внешних механических нагрузок к значительным перемещениям друг относительно друга. Физическое со--етояние полимера, соответствующее таким температурам, называют вязкотекучим, поскольку для него характерны большие необратимые деформации (течение).

Линейные аморфные полимеры могут находиться в трех состояниях: стеклообразном, высокоэластическом и пластическом (вязкотекучем). Переход из одного состояния в другое происходит is определенных интервалах температур, паизаннык темтертгурой стеклования (Гс) и температурой текучести (Тг). Эти температуры не характеризуют фазовых переходов полимера, так как хаотичность структуры, свойственная аморфному состоянию вещества, при этом сохраняется. Поэтому переход из одного состояния в другое происходит постепенно и не сопровождается скачкообразным изменением фязико-мека'шческих свойств полимера. Исследования закономерностей изменения объема аморфного полимера с изменением температуры показали, что в некотором температурном интервале нарушается прямолинейная зависимость этих двух величин. Температурный интервал первого

При температуре текучести полимера начинается интенсивное скольжение макромолекул относительно друг друга, определяемое подвижностью всей цепи в целом. Поэтому температура текучести неизменно возрастает с увеличением молекулярного веса полимера. Таким образом, с повышением степени полимеризации линейного полимера интервал между температурой текучести и температурой стеклования все возрастает, т. е. увеличивается область высокоэластических деформаций. На рис. 11 приведены результаты определения на динамометрических весах Тс и Тт

Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный механизм), а затем при более высоких температурах — к образованию трещин «серебра», стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых «надрывов», являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область «пластического» состояния между температурой пластичности Тп и температурой текучести Гт. Разрушение в

Поскольку отрезки разнородных по химическому составу отрезков цепей, составляющих макромолекулы блок- и привитых сополимеров, достаточно велики, они могут сегрегироваться с образованием отдельных микрофаз. Поэтому, если свойства обычных сополимеров, как правило, усредняются по сравнению со свойствами составляющих их компонентов, то блок- и привитые сополимеры обычно объединяют в себе свойства исходных гомополимеров. В зависимости от числа составляющих их компонентов они могут иметь, например, несколько температур стеклования, а температура текучести сополимера определяется наивысшей температурой текучести одного из компонентов. Так, блок-сополимер бутадиена и стирола имеет две температуры стеклования — 0°С (полибутадиен) и 100 °С (полистирол). Именно поэтому реакции привитой или блок-сополимеризации широко используются для увеличения деформируемости ряда природных жесткоцепных полимеров, например целлюлозы или крахмала, для которых высокоэластическбе состояние не реализуется, поскольку температура стеклования этих полимеров

При еще. более высоких температурах за время нагружения успевает произойти не только изменение формы макромолекул и отдельных их частей, но и заметное перемещение макромолекул как целого (их центров тяжести) относительно друг друга под действием внешней силы. В результате происходит развитие необратимой деформации полимера, т. е. его течение. Температура, при которой наряду с .обратимой высокоэластической становится значительной и необратимая деформация, называется температурой текучести.

неполярными, и вязкость полярных полимеров выше, чем неполярных. Поэтому, для того чтобы вызвать перемещение цепей как единого целого, полярный полимер необходимо нагреть до более высокой температуры, так как он обладает более высокой температурой текучести.

Высокоэластическая деформация, величина которой определяется изменением формы макромолекулярных клубков, мало зависит от температуры. По этой причине рост деформации под действием той же силы и за тот же промежуток времени, как определено выше, может быть обусловлен только развитием нового типа деформации— деформации вязкого течения. Этот вид деформации является результатом значительных смещений сегментов относительно положения равновесия, что приводит к перемещению молекулярных клубков относительно друг друга. Температура, при которой в полимере обнаруживается заметная деформация вязкого течения, приводящая к появлению изгиба на термомеханической кривой, называется температурой текучести. Выше температуры текучести полимер находится в вязкотекучем состоянии.

Известно, что при деформировании полимеров в них развивается два вида деформации: обратимая эластическая и необратимая вязкая. Равновесный модуль полимера слабо зависит от температуры (см. гл. 8): он пропорционален абсолютной температуре. В то же время интенсивность теплового движения с ростом температуры сильно возрастает. Это в целом приводит к тому, что с ростом температуры доля необратимой деформации в общей величине деформации полимера непрерывно увеличивается. Пусть е=еэл + енеобр, где е — общая деформация, а еэл и енеовр—соответственно упругая и необратимая составляющие деформации. Температура, при которой в общей деформации начинает преобладать енеобр, называется температурой текучести. Этой температуре соответствует перегиб на термомеханической кривой, который показывает, что полимер перешел в вязкотекучее состояние (см. рис. 7.6).

Температура, при которой необратимые деформации (деформации вязкого течения) начинают преобладать над эластической (обратимой) деформацией, называется температурой текучести 7V Она

отмечается точкой перегиба на термомеханической кривой и характеризует переход полимера в вязкотекучее состояние (см. рис. 7.6). Чем больше молекулярная масса полимера, тем больше вязкость, тем более затруднено развитие вязкого течения. Это означает, что с ростом молекулярной массы все выше температура, при которой необратимая деформация становится преобладающей: с ростом молекулярной массы растет Тт. Рост Гт в сопоставлении с ростом Тс при увеличении молекулярной массы приведен на рис. 10.9. С ростом молекулярной массы Тс быстро приближается к пределу, тогда как Гт растет непрерывно. Это приводит к росту интервала Гт—Т,;, в котором полимер не только сохраняет спосоо-ность к большим эластическим деформациям, но эти деформации являются также преобладающими в величине общей деформации. Чем выше Гт, тем протяженнее область высокоэластического состояния. Вместе с тем рост Гт уменьшает область вязкотекучего состояния, т. е. интервал между температурой начала термодеструкции 7\д и температурой текучести (Ттд—Гт). Последнее ограничивает возможности переработки полимера, поскольку небольшие колебания температуры при переработке приводят либо к потере текучести, либо к заметной термодеструкции.

Авторы ссылаются, однако, на экспериментальные данные, которые подтверждают наличие процесса разветвления цепей в ходе окислительной реакции, приводящей к верхнетемпературному воспламенению. Эти данные сводятся к тому, что в то время как максимальная скорость окисления метана была наблюдена Боном и Аллюмом [1] для смесей 2СН4 + 02, наименьшая температура воспламенения соответствует, согласно опытам Нейлора и Уиллера [80], смесям, в которых содержание метана много меньше 50%1. Отсюда Льюис и Эльбе приходят к выводу, что скорость реакции сама по себе еще не определяет положения предела воспламенения. Такой вывод, понятно, не может быть согласован с представлением о чисто тепловой причине взрыва, поскольку в этом случае углеводородо-кислород-ная смесь того состава, при котором реакция обладает наибольшей скоростью, должна была бы обладать наименьшей температурой воспламенения.

Наинизшая температура смеси газа и воздуха, при которой выделение тепла за счет реакции окисления (горения) газа несколько превышает теплоотдачу, называется температурой воспламенения. Превышение выделяющегося тепла должно при этом не только покрывать потери тепла в окружающую среду, но и быть достаточным для активизации сосед-

Наинизшая температура смеси газа и воздуха, -при которой выделение тепла за счет реакции горения газа несколько превышает теплоотдачу, называется температурой воспламенения. Превышение выделяющегося тепла должно при этом не только покрывать потери тепла в окружающую среду, но и быть достаточным для активизации соседних частиц газа и воздуха и для нагрева их до температуры воспламенения. Только лри этих условиях возможно устойчивое горение газа. Однако температура воспламенения топлива является вполне определенной величиной, характерной для данного вида топлива. В практических условиях она зависит не только от химического состава и физических свойств топлива, но и от ряда других условий: концентрации газа и кислорода, степени перемешивания газа и воздуха, формы и размеров топочного пространства, быстроты и способов нагрева смеси, давления газа и воздуха,, а также наличия катализаторов, ускоряющих или замедляющих, химические процессы горения.

25. Что понимают под температурой воспламенения и от чего она зависит?

При работе со сжиженными газами следует иметь в виду, что они характеризуются низкой температурой воспламенения (430— 460° С) и могут воспламеняться от нагретых предметов, не дающих открытого огня и свечения, т. е. от предметов внешне теплых.

Температурой воспламенения является наинизшая температура, при которой смесь паров спирта с воздухом при атмосферном давлении воспламеняется от постоянного источника зажигания, например при поднесении пламени.

Пожаро- и взрывоопасность. Пожароопасность сжиженных газов характеризуется следующими свойствами: высокой темпера--турой горения, значительной теплотой, выделяющейся при сгорании газовоздушной смеси, низкими пределами воспламеняемости (взрываемости) и температурой воспламенения паровой фазы, потребностью большого количества воздуха при горении.

Температура воспламенения. Минимальную температуру, до которой должна быть нагрета газовоздушная смесь, чтобы начался процесс горения (реакция горения), называют температурой воспламенения. Она не является постоянной величиной и зависит от многих причин: содержания горючего газа в газовоздушной смеси, степени однородности смеси, размеров и формы сосуда, в котором она нагревается, быстроты и способа нагрева смеси, давления, под которым находится смесь, и др.

масло с высокой температурой воспламенения (около 300°). Наилучшими

4. Что называется горением, температурой вспышки, температурой воспламенения жидкости?

Для ракетных и дизельных двигателей, наоборот, наиболее ценны топлива с нормальной цепью углеродных атомов, обладающие наиболее низкой температурой воспламенения. Эту характеристику принято оценивать цетановым числом. Цетановое число 100 имеет углеводород к-С16Н34» а цетановое число 0 — 1-метилнафталин.




Теплотворная способность Тепловыми колебаниями Терефталевого альдегида Технический четыреххлористый Термическая стабильность Термические превращения Термическим разложением Термически стабильные Термической изомеризации

-
Яндекс.Метрика