Главная --> Справочник терминов


Топологической структуры Топологическая структура. Концентрация сшивок и средняя ММ межузловых цепей являются простейшими характеристиками топологической структуры. Концентрация сшивок связана со временем спин-спиновой релаксации Т2; средняя длина цепи между сшивками связана с шириной линии ЯМР. Принципиальная возможность определения густоты поперечных связей из ЯМР-измерений заключается в чувствительности параметров ЯМР ( времени затухания поперечной и продольной намагниченности) к различным типам движения молекулярных цепей. Несомненными преимуществами метода ЯМР по сравнению с традиционными методами исследования вулканиза-ционных сеток резин являются быстрота получения информации и отсутствие жестких требований к количеству и форме образца.

Фирма "Гудьир" обнаружила интересный факт, о котором сообщается в четвертом номере журнала "Сырье и материалы для резиновой промышленности" за 1998 год. Оказывается, что для получения протекторных резин с повышенными показателями прочности, сопротивления раздиру, износостойкости и сцепных свойств необходимо использовать диеновые каучуки звездчатой структуры. Такая топологическая структура полу-

В [1] для описания этого уровня организации полимеров предлагается ввести термин «топологическая структура», под которым подразумевается тот уровень организации молекулярных цепей полимера и связи между их элементами, который можно выражать в виде графа без учета конкретного химического строения элементов. При таком описании полимер представляют в виде пространственной системы нитей, абстрагируясь •от химической природы молекул полимера. С топологической точки зрения под сетчатыми, или трехмерными полимерами следует понимать такую полимерную систему, молекулы которой могут достигать макроскопических размеров и характеризоваться наличием большого числа разветвлений и циклов разного размера, т. е. могут представлять собой бесконечный циклический граф [1].

Химическое строение эпоксидных полимеров определяется строением олигомеров и отвердителей, использованных для получения полимера, и, как правило, его можно считать известным, если в ходе отверждения не протекает большое число побочных реакций. Однако топологическая структура сетчатых полимеров, которая значительно сложнее топологической структуры линейных полимеров, исследована еще очень мало. При количественном описании топологической структуры пространственных полимеров возникают большие трудности, связанные с огромным числом параметров, характеризующих пространственную сетку, стохастическим характером сетки, наличием физических узлов, зацеплений и межмолекулярного взаимодействия, образованием циклов, неодинаковой функциональностью узлов, различными длиной и химическим строением цепей между узлами, а также с протеканием побочных реакций, нарушающих соотношение между компонентами и приводящих к образованию дефектов сетки (свободных концов, разрывов и т. д.).

Термообработка 70 Термостойкость 51 2,4-Толуилендиизоцианат 187 Топологическая структура 54, 55, 57 Трещины 165, 166 Трикрезилфосфат 112 Триметялгексаметнленднамин 36 2,4,6-Тркс (диметиламииометн л) фенол 46

В [1] для описания этого уровня организации полимеров предлагается ввести термин «топологическая структура», под которым подразумевается тот уровень организации молекулярных цепей полимера и связи между их элементами, который можно выражать в виде графа без учета конкретного химического строения элементов. При таком описании полимер представляют в виде пространственной системы нитей, абстрагируясь •от химической природы молекул полимера. С топологической точки зрения под сетчатыми, или трехмерными полимерами следует понимать такую полимерную систему, молекулы которой могут достигать макроскопических размеров и характеризоваться наличием большого числа разветвлений и циклов разного размера, т. е. могут представлять собой бесконечный циклический граф [1].

Химическое строение эпоксидных полимеров определяется строением олигомеров и отвердителей, использованных для получения полимера, и, как правило, его можно считать известным, если в ходе отверждения не протекает большое число побочных реакций. Однако топологическая структура сетчатых полимеров, которая значительно сложнее топологической структуры линейных полимеров, исследована еще очень мало. При количественном описании топологической структуры пространственных полимеров возникают большие трудности, связанные с огромным числом параметров, характеризующих пространственную сетку, стохастическим характером сетки, наличием физических узлов, зацеплений и межмолекулярного взаимодействия, образованием циклов, неодинаковой функциональностью узлов, различными длиной и химическим строением цепей между узлами, а также с протеканием побочных реакций, нарушающих соотношение между компонентами и приводящих к образованию дефектов сетки (свободных концов, разрывов и т. д.).

Термообработка 70 Термостойкость 51 2,4-Толуилендиизоцианат 187 Топологическая структура 54, 55, 57 Трещины 165, 166 Трикрезилс'росфат 112 Триметялгексаметнленднамин 36 2,4,6-Тркс (диметиламииометн л) фенол 46

Топологическая структура полимера есть тот уровень организации полимерной системы, характеризующий связность элементов структуры, который можно выразить в виде графа без учета конкретного химического содержания и расположения его элементов в пространстве. Как принято [1], под' графом мы понимаем множество вершин и пар вершин, соединенных ребрами. Вершинами в рассматриваемом случае будут являться узлы ветвления и концы цепей, ребрами — соединяющие их отрезки цепей. Таким образом, в топологическом плане линейный полимер можно изобразить в виде ребра, соединяющего две вершины, разветвленный полимер — в виде дерева, сетчатый полимер — в виде циклического графа.

Наиболее прямым и непосредственным образом топологическая структура сетчатого полимера проявляет себя в равновесных свойствах: при деформации под нагрузкой и при набухании.

Температура стеклования отверждающейся системы тем выше, чем больше конверсия. Поэтому чем выше температура опыта, тем меньшая часть реакции протекает в условиях стеклообразного состояния, т. е. тем в меньшей степени процесс контролируется диффузией. В диффузионной области реакция между функциональными группами, находящимися в непосредственной близости друг от друга, не испытывает сильных ограничений; взаимодействие между группами, находящимися далеко друг от друга, затруднено или запрещено вообще. В этом случае процесс направлен в сторону образования малых циклов, т. е. топологическая структура сетки будет тем более дефектна, чем большая часть процесса проходила в стеклообразном состоянии. К этому добавляется еще и некоторая разница в предельных глубинах превращения. Таким образом, понижение температуры реакции увеличивает дефектность топологической структуры и повышает способность системы к релаксации. Именно поэтому понижение температуры в определенном интервале, благодаря увеличению способности к релаксации, позволяет системе упаковаться в наибольшей степени. Однако слишком высокая дефектность топологической структуры, развивающаяся при дальнейшем понижении температуры, снова неблагоприятно сказывается на возможности упаковаться.

Топологическая структура. Концентрация сшивок и средняя ММ межузловых цепей являются простейшими характеристиками топологической структуры. Концентрация сшивок связана со временем спин-спиновой релаксации Т2; средняя длина цепи между сшивками связана с шириной линии ЯМР. Принципиальная возможность определения густоты поперечных связей из ЯМР-измерений заключается в чувствительности параметров ЯМР ( времени затухания поперечной и продольной намагниченности) к различным типам движения молекулярных цепей. Несомненными преимуществами метода ЯМР по сравнению с традиционными методами исследования вулканиза-ционных сеток резин являются быстрота получения информации и отсутствие жестких требований к количеству и форме образца.

Функция P(N), характеризующая ММР цепей сетки, является одной из наиболее информативных структурных характеристик сетчатых полимеров. Эта величина может быть определена по величине ССИ (спад свободной индукции). Таким образом, метод ЯМР позволяет исследовать зависимость топологической структуры эластомеров от условий их синтеза, а также характер изменения топологической структуры в различных условиях эксплуатации эластомеров.

Метод пенетрации при постоянно действующем напряжении и в импульсном режиме термомеханического анализа позволяет [5] обнаружить влияние микро- и топологической структуры эластомеров на их пластоэластические свойства. Импульсный метод нагружения дает возможность разделить возникающую деформацию на необратимую и обратимую составляющие для получения информации о поведении образцов в любой температурной точке. Анализируя температурные зависимости, можно не только определить температуры стеклования и текучести, но и получить сведения о кристаллизации, эластических и вязкостных свойствах исследуемых образцов. Например,

Химическое строение эпоксидных полимеров определяется строением олигомеров и отвердителей, использованных для получения полимера, и, как правило, его можно считать известным, если в ходе отверждения не протекает большое число побочных реакций. Однако топологическая структура сетчатых полимеров, которая значительно сложнее топологической структуры линейных полимеров, исследована еще очень мало. При количественном описании топологической структуры пространственных полимеров возникают большие трудности, связанные с огромным числом параметров, характеризующих пространственную сетку, стохастическим характером сетки, наличием физических узлов, зацеплений и межмолекулярного взаимодействия, образованием циклов, неодинаковой функциональностью узлов, различными длиной и химическим строением цепей между узлами, а также с протеканием побочных реакций, нарушающих соотношение между компонентами и приводящих к образованию дефектов сетки (свободных концов, разрывов и т. д.).

Н. С. Ениколоповым с сотр. [1, 25, 27] предложена статистическая модель топологической структуры сетки, моделируемой методом Монте-Карло. В соответствии с этой моделью сетка полимера состоит из циклических структур различного размера, соединенных в единую пространственную структуру. Такая модель дает возможность достаточно полно, хотя и громоздко, описывать структуру сетки. Здесь мы не будем подробно рассматривать эти представления, так как они достаточно полно описаны в литературе.

флуктуациями, вызывающими образование роевой структуры жидкости. Это предположение подтверждается наличием таких же глобул или доменов во многих неорганических и органических стеклообразных телах [84, 85], где их образование не может быть связано с полимерной природой вещества. Флуктуации плотности упаковки являются сравнительно лабильными и изменяются под действием различных факторов, увеличивающих подвижность молекул, без существенного изменения характера топологической структуры.

Химическое строение эпоксидных полимеров определяется строением олигомеров и отвердителей, использованных для получения полимера, и, как правило, его можно считать известным, если в ходе отверждения не протекает большое число побочных реакций. Однако топологическая структура сетчатых полимеров, которая значительно сложнее топологической структуры линейных полимеров, исследована еще очень мало. При количественном описании топологической структуры пространственных полимеров возникают большие трудности, связанные с огромным числом параметров, характеризующих пространственную сетку, стохастическим характером сетки, наличием физических узлов, зацеплений и межмолекулярного взаимодействия, образованием циклов, неодинаковой функциональностью узлов, различными длиной и химическим строением цепей между узлами, а также с протеканием побочных реакций, нарушающих соотношение между компонентами и приводящих к образованию дефектов сетки (свободных концов, разрывов и т. д.).

Н. С. Ениколоповым с сотр. [1, 25, 27] предложена статистическая модель топологической структуры сетки, моделируемой методом Монте-Карло. В соответствии с этой моделью сетка полимера состоит из циклических структур различного размера, соединенных в единую пространственную структуру. Такая модель дает возможность достаточно полно, хотя и громоздко, описывать структуру сетки. Здесь мы не будем подробно рассматривать эти представления, так как они достаточно полно описаны в литературе.

флуктуациями, вызывающими образование роевой структуры жидкости. Это предположение подтверждается наличием таких же глобул или доменов во многих неорганических и органических стеклообразных телах [84, 85], где их образование не может быть связано с полимерной природой вещества. Флуктуации плотности упаковки являются сравнительно лабильными и изменяются под действием различных факторов, увеличивающих подвижность молекул, без существенного изменения характера топологической структуры.

Изложение материала проведено с единых позиций об определяющей роли топологической структуры, задаваемой химическим строением исходных мономеров и условиями синтеза, в формировании свойств сетчатых полимеров.

Рассмотрение сетчатых полимеров потребовало уточнения существующей в настоящее время классификации структурной организации полимеров. Как показывает анализ, структурную организацию полимеров следует подразделить на три уровня: молекулярный, топологический и надмолекулярный. Авторами сделана попытка установить связь между физико-механическими свойствами сетчатых полимеров как в высокоэластическом, так и в стеклообразном состоянии с различными уровнями их структурной организации. Особое внимание было уделено анализу роли топологической структуры, задаваемой химическим строением исходных мономеров и условиями синтеза, в формировании свойств сетчатого полимера.




Тщательного отделения Трехмерной полимеризации Третичный бутиловый Третичные алифатические Технической конференции Третичные вторичные Третичных гидроперекисей Третичными галогенидами Третичная структура

-
Яндекс.Метрика