Главная --> Справочник терминов


Волокнистых полуфабрикатов При введении волокнистых наполнителей не только улучшаются физико-механические свойства резин, но и обеспечивается анизотропия свойств в материале. В той или иной мере применение при производстве РТИ нашли природные, химические и минеральные волокна. Важной характеристикой волокнистых наполнителей является фактор формы — отношение длины волокна к диаметру. У большинства волокон он изменяется в широких пределах от 5 до 2700, хотя оптимальным считается фактор формы от 100 до 200. При среднем диаметре волокон 20-30 мкм желательна длина 3,0-4,5 мм. Волокна большей длины сложней равномерно распределить в объеме резины, они, как правило, перепутываются, образуя клубки. Поэтому рекомендуется волокна перед введением измельчить. Если необходимо ввести волокна большей длины, можно рекомендовать вво-

Многие авторы считают, что введение волокнистых наполнителей в умеренных количествах в смеси на основе эластомеров различной природы не требует корректирования вулканизационной системы и режимов вулканизации резин. Однако, учитывая, что рецептура исследуемой резиновой смеси является новой, а влияние волокнистых наполнителей на параметры технологического процесса получения РТИ из этих резин не изучены, уточнены режимы переработки смесей с полиамидными волокнами.

При наличии адгезионной обработки частиц волокнистых наполнителей композиционные материалы проявляют высокие уста-

Наличие ориентации волокнистых наполнителей в резинах устанавливали непосредственно по микрофотографиям поверхности разрушения или срезов, а также косвенно, по изменению свойств смесей или вулканизатов в зависимости от направления расположения волокон. Известно, что тип волокон влияет на степень их ориентации в эластомерной матрице. Жесткие волокна легче ориентируются, чем гибкие; последние обладают повышенной скручиваемостыо, а также склонностью к агломерации, которая проявляется у всех видов органических волокон с необработанной поверхностью. Углерод-

Способы изготовления смесей и их переработки оказывают заметное влияние на степень ориентации волокон. В процессе смешения с жидкими каучуками волокна легко ориентируются, причем даже длинные волокна, обладающие значительной жесткостью, не разрушаются. Смеси, изготовленные в резиносмесителе, обладают незначительной анизотропией свойств, однако степень ориентации волокон несколько увеличивается, если смеси затем перерабатывают на вальцах. Направленная подача резиновой смеси в зазор вальцев способствует дальнейшему увеличению ориентации волокон. Напротив, приемы повышения однородности смеси, такие как частые подрезания и подача в зазор перпендикулярно валкам, нарушают ориентацию волокнистых наполнителей. Поэтому для создания материалов с повышенной анизотропией свойств необходимо по возможности поддерживать постоянным направление ориентации волокон в смеси, и наоборот. Эффект ориентации возрастает при повышении до определенного уровня температуры и продолжительности обработки на вальцах, замене вальцевания шприцеванием и каландрова-нием.

Под действием сдвиговых напряжений происходит не только деструкция эластомера, но и уменьшение размеров волокнистых наполнителей. Непосредственную оценку изменения размеров волокон при введении их в эластомерную матрицу дает микроскопический анализ размеров волокон, исходных и введенных в резиновую смесь. Интересно, что поперечные размеры волокон сохраняются без изменения, значительно уменьшаются только длины волокон.

Неоднородность механических свойств приводит к неравномерной вытяжке и ускоренному износу резиновых изделий. Каландровый эффект полностью устранить невозможно, но можно значительно уменьшить его, если избежать применения анизотропных наполнителей, т. е. наполнителей с пластинчатой или вытянутой формой частиц— окиси магния, каолина, окиси цинка, волокнистых наполнителей. Кроме того, каландровый эффект значитель-

Наиболее часто применяют твердые порошкообразные и волокнистые наполнители, обеспечивающие повышение прочности, модуля, температур плавления, необходимую электропроводность, снижение степени набухания и растворимости. Кроме того, наполнители снижают расход полимеров и себестоимость изделий. Применение волокнистых наполнителей позволяет изменять спойства изделий в заданном направлении. Такие изделия называются армированными. / / с ^—^—г^-^^

разных или волокнистых наполнителей, обычно содержат растворители (мине-

При введении волокнистых наполнителей в полимеры

Фирмой «Сумитемо Бакелуте КО» (Япония) предложен способ получения вспененных материалов на основе фенольных полимеров новолачного типа и волокнистых наполнителей [33, 78]. Пенопласты этого типа обладают малой объемной массой, высокой прочностью, они почти не изменяют своих свойств при высоких и низких температурах и особенно широко применяются в условиях низких температур.

В электронном микроскопе вместо светового излучения используется пучок ускоренных электронов. Изображение изучаемого объекта наблюдается на флуоресцентном экране или фиксируется фотографическим способом. Увеличение в электронном микроскопе примерно на два порядка выше, чем у оптических микроскопов, и достигает 103...105. Разрешающая способность в зависимости от техники исследования может составлять от 6...10 им до 0,2. ..0,5 нм. Это позволяет изучать разнообразные надмолекулярные образования у синтетических полимеров, фибриллярную структуру цел-люлозосодержаших клеточных стенок древесины и других растительных тканей, ультраструктуру волокнистых полуфабрикатов целлюлозно-бумажного производства.

В растровом электронном микроскопе пучок электронов отражается от поверхности образца, и изображение создается с помощью электронно-катодной лучевой трубки. РЭМ позволяет получать объемные изображения исследуемой поверхности и не требует специальной подготовки образцов. В настоящее время РЭМ находит широкое применение для изучения различных надмолекулярных образований в полимерах, волокнистых полуфабрикатов целлюлозно-бумажного производства, поверхности бумаги и т. д.

Клеточная стенка анатомических элементов древесины, волокон технической целлюлозы и других волокнистых полуфабрикатов имеет сложное строение, связанное с распределением в клеточной стенке высокомолекулярных химических компонентов. Для изучения этих вопросов применяют, кроме световой, микроскопию в ультрафиолетовом и поляризованном свете, а также флюоресцентную микроскопию. Для исследования тонкого строения клеточной стенки - ультраструктуры (субмикроструктуры) используют главным образом электронную микроскопию (см. 5.4) с применением просвечивающих (ПЭМ) и растровых, или сканирующих, электронных микроскопов (РЭМ). Эти исследования имеют важное значение для понимания изменений, происходящих с анатомическими элементами древесины и другого растительного сырья, а также в клеточной стенке в процессах делигнификации и других процессах химической и химико-механической переработки древесины.

При использовании древесины в качестве волокнистого сырья в первую очередь оценивают тип и содержание волокон и их ультраструктуру, от которых зависят бума-гообразующие свойства. Для получения целлюлозы и бумаги наибольшую ценность представляют прозенхимные клетки, среди которых лучшими бумагообразующими свойствами отличаются трахеиды и волокна либриформа. Как уже отмечалось, из древесины хвойных пород получаются длинноволокнистые полуфабрикаты, а из древесины лиственных - коротковолокнистые. Содержащиеся в древесине лиственных пород сосуды ухудшают прочностные свойства волокнистых полуфабрикатов, но придают хорошую впитывающую способность бумаге. Паренхимные клетки при варке частично теряются, но содержимое сохранившихся в целлюлозной массе паренхимных клеток может создавать в производстве бумаги «смоляные затруднения» (ухудшать показатели качества бумаги, вызывать отложение «смол» на оборудовании и т.д.) В древесине лиственных пород по сравнению с хвойными содержится меньше волокон и больше коротких клеток, теряющихся при варке целлюлозы, но сильнее развита проводящая система, вследствие чего древесина некоторых лиственных пород имеет лучшую проницаемость и требует меньшего времени на варку. Лигнин древесины лиственных пород вследствие большей доли фенилпропановых единиц с двумя метоксильными группами имеет более редкую сетчатую структуру и менее способен к реакциям сшивания, чем лигнин древесины хвойных. Это в некоторой степени облегчает делигнификацию древесины лиственных пород. Все эти различия между древесиной лиственных и хвойных пород требуют разных технологических режимов при их переработке в целлюлозу и бумагу и создают трудности при совместной варке древесины лиственных и хвойных пород.

Лиственные породы в России делят на две группы - мягколиствен-ные и твердолиственные. Твердость древесины хвойных пород, за небольшими исключениями, невелика. Это объясняет, почему в научно-технической литературе на английском языке терминами мягкая древесина (softwood) и твердая древесина (hardwood) обозначают древесину хвойных пород и древесину лиственных пород, соответственно. Повышенная твердость древесины ряда лиственных пород препятствует получению из них качественных волокнистых полуфабрикатов механическими и термомеханическими методами.

Реакции полисахаридов древесины имеют очень важное практическое значение в процессах химической и химико-механической переработки древесины - целлюлозно-бумажном, гидролизных, лесохимических производствах, производстве древесных плит и пластиков. Цель целлюлозно-бумажного производства - получение из древесины технической целлюлозы и других волокнистых полуфабрикатов. При этом нецеллюлозные полисахариды в большей или меньшей степени удаляются в результате деструкции в различных процессах варки, протекающих в кислой или щелочной средах, а также под воздействием окислителей. В гидролизных производствах углеводная часть древесины подвергается гидролизу с целью получения из полисахаридов Сахаров и продуктов их дальнейшей переработки. В одном из производств лесохимии - пиролизе древесины высокомолекулярные компоненты древесины и в том числе целлюлоза

Выделение лигнина из древесины проводят с различными целями: для получения препаратов лигнина и их последующего исследования; для количественного определения лигнина в древесине и другом растительном сырье прямыми методами. При делигнификации сырья с целью получения технической целлюлозы и других волокнистых полуфабрикатов можно из отработанных варочных растворов выделить технические лигнины. В зависимости от цели подбирают соответствующие методы выделения. При получении препарата лигнина для исследования метод выделения должен обеспечить минимальное изменение самого лигнина. Выделить же природный лигнин из древесины в неизмененном состоянии практически невозможно. При количественном определении лигнина метод выделения должен обеспечить выход препарата лигнина, более или менее соответствующий его количеству в древесине. При делигнификации древесины в производстве целлюлозы основная задача заключается в получении целлюлозы с большим выходом и определенными показателями качества, в том числе с малым содержанием остаточного лигнина. В этом случае глубокие химические изменения, происходящие при его удалении, неизбежны. Технические лигнины, выделенные из отработанных варочных растворов, значительно изменены по сравнению с природным лигнином.

Окисление лигнина находит широкое применение в промышленности при отбелке технических целлюлоз и для делигнификации растительного сырья при производстве волокнистых полуфабрикатов (см. 13.3). Для этого должны использоваться окислители, избирательно взаимодействующие с лигнином при максимальном сохранении полисахаридов и отвечающие экологическим требованиям.

Делигнификация (удаление лигнина) - один из важнейших процессов химической переработки растительного сырья. Делигнификацию древесины и прочих видов растительного сырья осуществляют при получении технической целлюлозы и других волокнистых полуфабрикатов с помощью варочных процессов (варки целлюлозы). Дополнительная де-лигнификация технических целлюлоз проводится при получении беленой целлюлозы для бумаги и целлюлозы для химической переработки в процессе отбелки. В химии процессов делигнификации обычно рассматривают две группы реакций: реакции, приводящие к растворению лигнина, и реакции, затрудняющие этот процесс (реакции конденсации). В ходе варочных процессов и отбелки лигнин и продукты его деструкции могут вступать в реакции нуклеофильного и электрофильного замещения, элиминирования, восстановительного расщепления и изомеризации. Кроме гетеролитических (ионных) реакций могут протекать и свободноради-кальные, например, окисление, рекомбинация.

Пероксид водорода в щелочной среде может образовывать такие же активные частицы, что и кислород. Однако в сильно щелочной среде и в отсутствие катализаторов разложения (ионы переходных металлов) главной их них является гидропероксид-анион (НОСГ), который в качестве нуклеофила присоединяется к существующим в щелочной среде хинонметидным интермедиатам, сопряженным карбонильным и ранее образовавшимся хинонным структурам. На схеме 13.14 показано взаимодействие гидропероксид-анионов с хинонными структурами лигнина с превращением последних в производные муконовой кислоты и оксираны. Преимущество пероксида водорода в условиях отбелки перед кислородом заключается в разрушении хромофорных структур, тогда как кислород, главным образом, их создает. Поэтому пероксидную отбелку используют и для волокнистых полуфабрикатов высокого выхода; лигнин при этом не удаляется, а обесцвечивается.

рами реагентов, и при ее химической переработке, в особенности в кислой среде, могут возникнуть трудности. Проблемы из-за экстрактивных веществ ядровой древесины могут появиться и при производстве волокнистых полуфабрикатов механическим, термомеханическим и химикотер-момеханическим способами.




Восстановление нафталина Восстановление нитросоединений Выделения алкалоидов Восстановление протекает Восстановление соединения Восстановление восстановление Восстановлении альдегидов Восстановлении боргидридом Восстановлении нитросоединений

-
Яндекс.Метрика