Главная --> Справочник терминов


Временная зависимость где Ge — модуль при бесконечно большом времени воздействия, который в случае твердого тела предположительно выше нуля. С функциями модуля удобно оперировать в комплексных величинах, содержащих (обратимую) сохраняющуюся компоненту и (необратимые) потери. Отношение модуля потерь G" и сохраняющейся компоненты G' называется тангенсом угла механических потерь tg6 = G"/G/. Феноменологическая теория вязкоупругости опирается на принцип суперпозиции Больцмана, т. е. на линейную аддитивность временных вкладов предыстории механического состояния. Следует подчеркнуть, что эта теория предназначена не столько для выявления вида спектров времен релаксации при детальных исследованиях структуры, сколько в целях применения полученных в некотором эксперименте (например, при ползучести) временных зависимостей свойств материала для расчета свойства того же самого материала при других воздействиях, например при динамическом нагружении [14, 55]. Общее применение этого метода ограничено областью линейной зависимости. В работе [14d] данная теория была распространена на область нелинейности. Она была также приспособлена для расчета ограниченных изменений структуры и ориентации напряженных систем [14е]. В связи с проблемами, рассматриваемыми в данной книге, будет указан смысл результатов, полученных с помощью феноменологической и «молекулярной» теории вязкоупругости [55 — 57] , и в частности коэффициента молекулярного трения, входящего в последнюю.

— Как следует из различия временных зависимостей изменения интенсивности фиксированных частот в искаженной

Снятие температурно-временных зависимостей удельной электропроводности (величины, обратной удельнрму сопротивлению) позволяет изучать особенности проявления кинетических и фазовых переходов в полимерах при действии слабых постоянных электрических полей. Еще более перспективно для этих целей измерение температурно-частотных зависимостей диэлектрических потерь и проницаемости в слабых переменных электрических полях. В частности, по проявлению максимумов диэлектрических потерь при определенных температуре или частоте можно судить о возникновении подвижности тех или иных атомных групп или более крупных участков макромолекул. Это дает возможность установить взаимосвязь строения и свойств полимеров, что необходимо для создания требуемых для техники материалов.

Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для ^-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением, надмолекулярных структур — микроблоков. Различие между про-

Результаты представляют в виде временных зависимостей относительной интенсивности сигнала, а именно экспоненциальной зависимости А, - А0 ехр( -Kt), где А,я.А0- текущая и исходная интенсивности сигнала в относительных единицах; К - константа скорости реакции 1-го порядка. При этом можно рассчитать величины констант и концентрации радикалов.

Из сопоставления данных временных зависимостей вспенивания композиций на основе полимеров СФ-121 и СФ-010 при различных температурах установлено, что на исследованных порофорах большее вспенивание имеет место для композиций на основе полимера СФ-121.

Практически одинаковое значение постоянной -0 и наличие общего полюса на графике временных зависимостей прочности неориентированного и ориентированного полимера (рис. 83) свидетельствует об одинаковых значениях энергии активации разрушения независимо от степени ори- i ентации. Следовательно, энерге- 1 тический барьер ?/„ определяется & химическим строением полимерной § цепи, а все изменения прочност- .ЕР ных свойств при разных ориента-циях обусловлены изменением структурно-чувствительного коэффициента j.

В инженерной практике в качестве «безопасного» напряжения практически можно брать то разрушающее напряжение /0, рассчитанное на начальное сечение, которое соответствует гарантийному сроку службы резины. Это «безопасное» напряжение можно определить, используя экспериментальные логарифмические графики временных зависимостей прочности, на которых эти зависимости выражаются в виде прямых линий. Диапазон долговечно-стей при этом должен быть достаточно широк (от 10 до 105 сек). Путем экстраполяции можно затем определить величину «безопасного» напряжения.

Для сопоставления временных зависимостей прочности твердых тел при статическом и циклических режимах на-гружения была предложена установка [643, с. 766, 767], принципиальная схема которой изображена на рис. 1.17. Мотор / с эксцентриком 2 на валу с помощью кривошипно-шатунного механизма 3 растягивает пружину 4, которая с помощью тяги 5, соединенной с демпфером 6, передает усиление образцу 7 и динамометру 8.

Существует ряд теорий, объясняющих явления адгезии. Первоначально были выдвинуты адсорбционная и термодинамическая теории адгезии [1], которые объясняли явления адгезии с той же научной точки зрения, что и адгезию жидкостей. Позднее появились электрическая теория адгезии, выдвинутая Б. В. Дерягиным и Н. А. Кротовой [2], и диффузионная теория адгезии, впервые предложенная Иозефовичем и Марком [3] и разработанная С. С. Воюцким с сотрудниками [4]. На первом этапе развития проблемы адгезии эти теории, казалось, противоречили друг другу. Так, например, на основании адсорбционной теории адгезия объясняется различными типами химических и молекулярных взаимодействий, могущих иметь место на границе раздела адге-зив—подкладка. Диффузионная теория предполагает наличие диффузионных процессов в зоне контакта. Экспериментальным подтверждением этой теории служат в ряде случаев результаты исследований температурных и временных зависимостей адгезии. В электрической теории адгезии подчеркивается, что процесс нарушения адгезионной связи в обычных условиях протекает необратимо, благодаря чему положения термодинамической теории адгезии, разработанные для жидкостей, становятся неприемлемыми. Таким образом, на первый план выдвигается вопрос выяснения природы адгезионных сил и характера изменения их в процессе отрыва.

Однако для подробного анализа временных зависимостей тока зарядки и разрядки, электретной разности потенциалов, абсорбционных характеристик (в частности, восстановленного напряжения), токов и напряжений термостимулированной деполяризации оказалось целесообразным еще более упростить задачу анализа перечисленных характеристик с распределением у(х). Непрерывная зависимость у(х) была заменена представлением диэлектрика в виде многослойной модели, каждый из слоев которой обладает определенной толщиной hi, проводимостью Y(. а в общем случае и диэлектрической проницаемостью е< (обычно для однородного диэлектрика все значения е/ счи-

Таким образом, временная зависимость изменения концентрации гипохлорита кальция может быть достаточно сложной, многофакторной, и поэтому предварительную обработку исходных данных проводили по методу начальных скоростей.

/ Важной характеристикой полимерных тел является временная зависимость их физических свойств.

В данной монографии мы рассмотрим физическую природу образования дефекта на примере линейных термопластов и эластомеров (табл. 1.1). Известно, что эти материалы имеют широкий диапазон свойств, хотя и состоят из подобных молекул. Их молекулы преимущественно линейные, гибкие имеют высокоанизотропные (невытянутые) цепи с молекулярными массами 20000—1000000 и более. На рис. 1.9 представлена цепная молекула полиамида-6 (ПА-6) в невытянутом состоянии с произвольным выделением сегментов, а на обведенной вставке показано ее основное звено. Относительные положения атомов и часть объема, занятая ими в цепи, иллюстрируются с помощью модели Стюарта для сегмента полиамида (рис. 1.10). Действительный размер распрямленного сегмента—1,97 нм. Если бы к такому сегменту можно было приложить напряжение вдоль оси цепи, то изгиб и растяжение основных связей обеспечивали бы в результате жесткость цепи ~200 ГПа [15], в то время как межмолекулярное взаимодействие сегментов вследствие более слабых вандерваальсовых сил обеспечивает жесткость только 3—8 ГПа в направлении, перпендикулярном оси цепи. Характерные свойства твердых полимеров, а именно анизотропия макроскопических свойств, микронеоднородность и нелинейность, а также сильная временная зависимость

28. Журков С. Н., Нарзулаев Б. Н. Временная зависимость прочности твер-

45. Журков С. Н., Нарзулаев Б. Н. Временная зависимость прочности твер-

120. Журков С. Н., Нарзулаев Б. Н. Временная зависимость прочности твер-

временная зависимость податливости J (t) не меняется с ростом о (рис. 2.1, б), а изохропы «о — е», отражающие связь между деформациями и напряжениями при фиксированных отсчетах времени, линейны (см. рис. 2.1, в).

Рис. 2.14. а — концеытрационно-временная зависимость ползучести ПВХ при

а — приложенная деформация; б — релаксация результирующих напряжений (восстановление); в — временная зависимость конформационной энтропии.

Временная зависимость vr вводится через граничные условия при h (t) из уравнения (10.9-4), из которого следует:

закономерностями разрушения. К ним относятся зависимости прочности от времени действия нагрузки (временная зависимость прочности), температуры (температурная зависимость), вида напряженного состояния, молекулярной массой и структуры полимера (химической и надмолекулярной структуры, молекулярной ориентации, степени поперечного сшивания и т. д.). В различных физических состояниях полимеры характеризуются различными специфическими механизмами разрушения, во многих из которых существенную роль играют релаксационные процессы.




Вследствие пониженной Вследствие повышенной Вследствие процессов Вследствие различных Выделение цианистого Вследствие содержания Вследствие сравнительной Вследствие термической Вследствие выделения

-
Яндекс.Метрика