![]() |
|
Главная --> Справочник терминов Вторичного метаболизма На первой стадии к 1-бутену присоединяется протон с образованием вторичного карбокатиона с плоской структурой: При действии безводной щавелевой кислоты на пинакол «новый спирт (51) наблюдается ретропинаколиновая перегруппировка. В данном случае из вторичного карбокатиона (52) образуется более энергетически выгодный карбокатион (53), который затем стабилизируется депротонированием: Вопрос о том, почему на первой стадии реакции протонируется обладающий менее основными свойствами атом кислорода гидроксигруппы в положении 2 глицерина, остается дискуссионным. Возможно, что скорость рассмотренной выше реакции, протекающей по механизму SN! с промежуточным образованием вторичного карбокатиона, выше скорости бимолекулярной реакции, протекающей по механизму SN2 и начинающейся с протонирования более основной первичной спиртовой группы, в результате которой должен образоваться гидроксиацетон: На первой стадии к 1-бутену присоединяется протон с образованием вторичного карбокатиона с плоской структурой: Энтальпия изомеризации вторичного карбокатиона СНзСН+СН2СНз в третичный (СНз)зС+-катион, согласно очень точньш калориметрическим измерениям в суперкислотах SC^FCl - SbFg, составляет -14,5 ккал/моль. Аналогично из всех изомерных пентанолов в суперкислотах получается mpem-пентилкатион, а из гексанолов - mpem-гексилкатион. Третичный 1-метилциклопентилкатион получается в результате ионизации всех изомерных спиртов и галогенидов: нием вторичного карбокатиона с плоской структурой: карбокатион мостиком вторичного карбокатиона При действии безводной щавелевой кислоты на пинатчино-вый спирт (51) наблюдается ретропинаколиновая перегруппировка. В данном случае из вторичного карбокатиона (52) образуется более энергетически выгодный карбокатион (53), который затем стабилизируется депротонированием: Современное объяснение правила Марковникова основано на сравнении энергий промежуточно образующихся а-комплексов (XVI) и (XVII). Как известно, основным фактором, обуславливающим устойчивость карбениевых ионов, является возможность делокализации положительного заряда. Алкильные группы обладают положительным индуктивным эффектом и поэтому могут участвовать в делокализации плюс-заряда, причем по мере накопления алкильных групп такая возможность увеличивается. Отсюда ясно, что устойчивость вторичного карбокатиона (XVI) больше, чем устойчивость первичного карбокатиона (XVII). Полагают, что энергия активации образования а-комплекса пропорциональна энергии образующихся ионов карбения и, следовательно, образование комплекса (XVI) произойдет легче (с меньшей затратой энергии), чем образование комплекса (XVII). ; Энтальпия изомеризации вторичного карбокатиона СН3СНСН2СН3 в третичный (СН3)3С+-катион, согласно очень точным калори-г метрическим измерениям в суперкислотах SO2FC1 — SbF5, состав-ет —14,5 ккал/моль. Аналогично из всех изомерных пентанолов суперкислотах получается «jpem-пентилкатион, а из гетссано-ta*B — дарет-гексижатион. Третичный 1-метилциклопентилкатион Так, например, при нагревании З-метилбутанола-2, насыщенного газообразным бромистым водородом, в качестве единственного продукта реакции образуется 2-бром-2-метилбутан вместо 2-бром-З-метилбутана — «нормального» продукта замещения гидроксила на галоген. Ниже приведена предполагаемая последовательность превращений, включающая изомеризацию вторичного карбокатиона в более стабильный третичный карбокатион за счет 1,2-гидридного сдвига: Предполагаемая авторами схема реакции включает в себя координацию SbF5 (или перфторбензильного катиона) по атому кислорода карбонильной группы, изомеризацию первоначально генерируемого вторичного иона карбе-ния в первичный в результате миграции атома фтора с последующей фиксацией карбокатионного центра нуклеофильным фрагментом молекулы атомом кислорода. Движущей силой изомеризации, очевидно, является переход от вторичного карбокатиона, на который оказывают дестабилизирующее влияние две электроноакцепторные фторалкильные группы, к более стабильному первичному иону карбения за счет взаимодействия вакантной р-орбитали атома углерода с неподеленными электронными парами геминальных атомов фтора. и другие компоненты жизнеобеспечения живой клетки) и вещества вторичного метаболизма, образующиеся часто на базе веществ первичного биосинтеза, которые, как правило, не являются необходимыми для основных биохимических процессов (алкалоиды, терпеноиды и др.). Вещества вторичного метаболизма, в свою очередь, классифицируют в соответствии с ключевыми соединениями их биосинтеза: шикиматный путь биосинтеза (шикимо-вая кислота), мевалоновый путь биосинтеза (мевалоновая кислота), полике-тидный путь биосинтеза (поликетиды). В связи с этим, здесь же следует обсудить такой вопрос, как целесообразность биосинтеза тех или иных веществ в живой клетке. Если в отношении продуктов первичного биосинтеза, в основном, все понятно: функции белков, нуклеиновых кислот, углеводов и жиров достаточно ясны и многообразны — то относительно наших знаний о роли продуктов вторичного метаболизма в жизнедеятельности организмов, их продуцирующих, этого сказать нельзя. Бытует даже такое мнение, что эти вещества — отбросы жизнедеятельности живых клеток. Безусловно, такие вещества-отбросы есть, но их не так много, как это представляется в настоящее время, а по мере углубления наших знаний о химии и биохимии природных субстанций это представление все больше обедняется фактическим материалом. И в настоящее время можно смело сказать, что вещества вторичного метаболизма являются средствами общения и взаимоотношения между организмами. Они выполняют функции сигнализации, защиты, орудия атаки, привлечения и т.д. В настоящее время общепринятой (и мы также будем придерживаться ее) является классификация природных соединений на две основные группы: вещества первичного биосинтеза и вещества вторичного метаболизма. Внутри первой группы вещества делятся на классы в соответствии с их химическим строением (по основным функциональным группам) и отчасти с их биологической функцией. Внутри второй группы вещества классифицируются также в соответствии с их принципиальной химической природой и путями биосинтеза. Внутри каждого класса, с учетом особенностей отдельных соединений, указывается их принадлежность к природным источникам и общность по деталям химического строения. Биологическая активность природных соединений рассматривается уже не как классификационный признак, а как свойства этих веществ. Т.е. мы видим, что основные классификационные признаки природных соединений — это путь биосинтеза и химическая структура. В последнее время, с целью увеличения количества активных веществ в том или ином природном источнике, в растениях чаще всего, используется метод серендипитности, суть которого сводится к тому, что растение, подвергшееся определенным экстремальным внешним воздействиям (засуха, обводнение, облучение и т.д.) интенсифицирует синтез соединений, защищающих его от этих внешних воздействий. Этот последний прием, кроме того, позволяет пролить свет на роль некоторых природных соединений, продуктов вторичного метаболизма главным образом, в жизнедеятельности исследуемого организма. Обычно термин терпены применяется для обозначения соединений, содержащих целое число изо-С5-фраг-ментов независимо от того, содержатся ли в их молекулах другие элементы, чаще всего кислород. Терпеноиды — это соединения с различным числом углеродных атомов, но структурными их предшественниками являются правильные терпены, т.е. они образованы реакциями вторичного метаболизма терпенов. Иногда терпенами называют только углеводороды соответствующего состава и структуры, а терпеноида-ми — любые их производные и метаболиты. Но эти два понятия, как и сами классы соединений, так тесно взаимосвязаны между собой, что принципиального различия в терминологии можно и не делать. В общем, это терпены и терпеноиды. В ходе изучения химического состава природных объектов всегда находились субстанции, которые как бы выпадали из основной классификации природных соединений, а именно — они не относились к веществам первичного биосинтеза, и трудно было найти нишу среди веществ вторичного метаболизма, они были немногочисленны, особенно на первых порах. Но со временем, в связи с усовершенствованием методов выделения и идентификации (к примеру, из 12,5 кг сырья растения Artemisia capillaris было выделено 1,7 мг вещества, структура которого была однозначно установлена — капилларидин Н, схема 12.1), Следует чаще публиковать обзоры, посвященные практическому использованию быстро растущей информации о продуктах вторичного метаболизма. Поддается ли, например, контролю количество и многообразие продуцируемых вторичных метаболитов или каковы пределы эффективного полусинтетического получения новых веществ путем микробных трансформаций, уже давно успешно применяющихся, например, для модификации стероидов? В общем случае относительная важность поликетидов для различных типов организмов отчасти отражает относительную важность соответствующих видов ацил-КоА в их общем метаболизме. Например, распространенность различных ароматических поликетидов в высших растениях является следствием важности биосинтеза ароматических кислот как звена, соединяющего процессы-фотосинтеза и лигнификации; наличие в грибах ацетатных поликетидов отражает важность ацетил-КоА как регулятора их метаболической реакции на изменения окружающей среды; преобладание «пропионатных» поликетидов в актиномицетах, вероятно, связано с аналогичными специфическими процессами в их еще мало изученном промежуточном метаболизме. Синтез поликетидов часто отражает степень использования организмом вторичного метаболизма как одного из механизмов регуляции его отношений со сре-Дой. В то же время под влиянием естественного отбора эти вторич- Поразительно, какое большое число чисто гипотетических путей биосинтеза алкалоидов впоследствии, при экспериментальной проверке оказались правильными. Так же поразительно, что все многообразие продуктов вторичного метаболизма (частью которого является биосинтез алкалоидов) достигается с помощью простых, почти шаблонных реакций, чего нельзя сказать о реакциях образования продуктов первичного метаболизма. Поэтому реакции вторичного метаболизма легко могут быть интерпретированы с помощью обычных представлений органической химии. Именно это обстоятельство способствовало тому, что большинство гипотез о биосинтезе алкалоидов подтвердилось. Оно же, очевидно, является причиной успешного моделирования путей биогенеза алкалоидов при их химическом синтезе. Включение метки из [1-14С] ацетата в чередующиеся атомы С-2', С-2, С-4 и С-6 кониина указывает на его происхождение иа Gs-поликетида или его эквивалента [57]. В таком случае вероятным промежуточным соединением является 5-оксооктановая кислота (60); действительно, эксперименты с мечеными соединениями показали, что кислота (60) и соответствующий альдегид (61) участвуют в биосинтезе кониина [58]. В ходе этих исследований неожиданно выяснилось, что предшественником кониина является также октановая кислота (59). Отсюда следует, что кониин образуется путем окисления жирной Cs-кислоты (октановой), а не путем восстановления Cs-поликетида. Если эти выводы верны, то кониин представляет собой уникальное явление в сфере вторичного метаболизма, поскольку до сих пор не известно ни одного другого метаболита (за исключением полиацетиленов), который синтезировался бы по ацетатному пути из жирной кислоты. ![]() Взаимодействия альдегида Взаимодействия функциональных Выделение триметиламина Взаимодействия образуется Взаимодействия полимеров Взаимодействия реагентов Взаимодействия вследствие Взаимодействием формальдегида Взаимодействием натриевой |
- |