Главная --> Справочник терминов


Взаимодействия макромолекул где /,-у — коэффициент бинарного взаимодействия компонентов.

1ц — параметр взаимодействия ( — / компонентов; Тц = 0.

Распад инициаторов может происходить термическим и фотохимическим путем, под действием энергии высоких излучений (радиации), а также в результате взаимодействия компонентов окислительно-восстановительных систем.

Первый член правой части уравнения (7) р Vs/22400 представляет собой эффект Пойнтинга для случая твердого теяа, подвергнутого давлению газа, и он не зависит от природы газа. Второй член учитывает молекулярные взаимодействия компонентов газового раствора и зависит от природы газа, и , им объясняется неодинаковая растворимость данного вещества в различных газах. .

Здесь Tct — температуры стеклования; о»,- — весовые доли компонентов; гз — параметр, значение которого зависит от вида компонентов и не зависит от их содержания в системе и который определяется энергией взаимодействия компонентов. Данная формула может быть обоснована теоретически [2.5]. Ее можно использовать также для оценки энергии взаимодействия компонентов в различных полимерных системах, для которых может быть установлено значение параметра ty-

где en, 8i2, Е22 — энергии взаимодействия компонентов 1 — 1, 1 — 2 и 2 — 2 в расчете на один контакт. Если считать, что число дырок п равно нулю, то из этого выражения можно получить соотношение для энергии системы без дырок. Вычитая энергию системы без дырок из энергии системы с дырками и разделив на число дырок, получим энергию образования дырки:

Параметр А? здесь является константой, зависящей от природы компонентов, но не от содержания их в системе, и характеризует энергию взаимодействия компонентов. Если Д? = 0, то Тс полимерной системы аддитивно складывается из температур стеклования отдельных компонентов. Если Д?>0, т. е. когда разрыв контактов типа 1 — 1 и 2 — 2 требует затраты меньшей энергии, чем ее выделяется при образовании двух контактов типа 1 — 2, то величина Т0 больше аддитивной. Наконец, если Д?<0, т. е. когда разрыв по

где /;/ — коэффициент бинарного взаимодействия компонентов.

Если энергия взаимодействия компонентов мала, а тепловое движение достаточно интенсивно, оно нарушает любой порядок в растворе. Поэтому соль-ваты и ассониать — это временно существующие Статистические образования, разрушающиеся тепловым днижением молекул.

Параметр В имеет то же значение, что и в уравнении (8), т. е. это параметр энергетического взаимодействия компонентов-Хаггипс вывел уравнения для активностей компонентов:

Дальнейшее развитие теории ассоциации ионов заключается в том, что ионные пары в растворе существуют в форме по крайней мере двух (а возможно, и более) дискретных форм. Наличие у ионных пар дипольного момента приводит к сильному электростатическому взаимодействию с молекулами полярного растворителя. Следует различать два типа взаимодействия компонентов внутри ионной пары: 1) взаимодействия, в

Многочисленными экспериментальными исследованиями уста новлено, что наряду с реакцией поликонденсации протекают про цессы, вызывающие деструкцию образующихся макромолекул по длине их цепи. Эти деструктивные процессы являются резуль татом взаимодействия макромолекул полимера с исходными ве ществами и низкомолекулярными побочными продуктами поли конденсации. В зависимости от типа исходных компонентов и начальных продуктов поликонденсации процессы деструкции могут происходить по принципу ацидолиза (деструкция под дей ствием кислот), аминолиза (деструкция полимера под действием аминов), алкоголиза (деструкция под действием спиртов). Де-структирующее действие перечисленных низкомолекулярных веществ распространяется прежде всего на макромолекулы, достигшие наибольших размеров. Вследствие меньшей стабильности и более легкой деструкции макромолекул высших фракций про-

но в очень широких пределах регулировать силы внутримолекулярного и межмолекулярного взаимодействия макромолекул, а также получать полимеры пространственной структуры с различной частотой расположения поперечных связей.

действия достаточно малых напряжений сдвига (при практически неразрушенных структурах) и особенно изучение эластических свойств растворов позволяют получить важные характеристики строения и взаимодействия макромолекул.

Макромолекулы могут реагировать друг с другом, образуя амидные или сложноэфирные связи. В случае взаимодействия макромолекул полиамида происходит реакция переамидирования:

Надмолекулярная структура. Способ укладки макромолекул в конденсированном состоянии определяется их регулярностью. Регулярные макромолекулы кристаллизуются, нерегулярные образуют аморфные системы. Количественными параметрами надмолекулярной структуры кристаллического полимера являются параметры его кристаллической решетки, а также степень кристалличности. Структура аморфного полимера характеризуется ближним порядком в расположении структурных единиц (сегментов) и однозначно охарактеризована быть не может. Косвенными характеристиками аморфной структуры полимера и интенсивности взаимодействия макромолекул являются его плотность и энергия когезии.

Результатом взаимодействия макромолекул в таких растворах является образование лабильных ассоциатов, состав которых непрерывно изменяется. Средний период жизни ассоцнатов высокомолекулярных соединений значительно бо 1ьше, чем период жизни ассоцнатов ннзкомолекулярных жидкостей, так как отрыв и присоединение сегментов макромолекул происходят гораздо медленнее, чем в случае молекул низкомотекулярных веществ. Размерь; ассоциатор и продолжитечыюсть их жизни зависят от температуры, концентрации раствора, строения полимера и растворителя При повышении температуры уветичива-ется сегментальная подвижность макромолекул, что способствует распаду ассоциатов; повышение концентрации, снижение температуры раствора приводят к увеличению ра меров и 1 ро-должительности существования ассоциатов.

Другим фактором, который необходимо учитывать при хрома-тографировании олигомеров, является их высокая адсорбируемость. Если адсорбционные центры статистически распределены по цепи, то энергия взаимодействия макромолекул с поверхностью сорбента возрастает с ростом ММ, и адсорбция приводит к ухудшению разделения, а в пределе - к разделению по адсорбционному механизму, сопровождающемуся инверсией порядка элюирования. Если же адсорбционные центры сосредоточены на концах макромолекул, то при неизменности энергии адсорбции изменение энергии Гиббса из-за снижения энтропии с уменьшением ММ увеличивается. При этом слабая адсорбция не препятствует анализу и, более того, несколько увеличивает селективность в низкомолекулярной области. Внешне адсорбционные эффекты проявляются в зависимости формы хроматограмм от полярности растворителя; исключить их удается путем применения в качестве сорбента органических гелей, а в качестве подвижных фаз -растворителей достаточно высокой полярности.

Глава 12. Изучение массы, разветвленности и взаимодействия макромолекул

Степень взаимодействия макромолекул друг с другом определяет так называемую энергию когезии - полную энергию, необходимую для удаления молекулы из жидкости или твердого тела. Чаще пользуются величиной удельной энергии когезии, или плотности энергии когезии (ПЭК), т.е. энергией когезии, приходящейся на 1 см3 объема тела.

Взаимодействия макромолекул линейные 57 объемные 57 топологические 88

Топологические взаимодействия макромолекул 88




Взаимодействие галоидных Взаимодействие кислорода Взаимодействие непредельных Выделенных продуктов Взаимодействие приводящее Взаимодействие реактивов Взаимодействии этилового Взаимодействии алкилгалогенидов Взаимодействии бензальдегида

-
Яндекс.Метрика