Главная --> Справочник терминов


Взаимодействие полимеров 21. Дубинская А. М., Бутягин П. Ю., Одинцова Р. Р., Берлин А. А. Взаимодействие полимерных свободных радикалов с аминами при низких температурах.— Высокомолекулярные соединения, 1968, т. А10, с. 410—415.

Третьей конформацией, которую может принять макромолекула, является максимально вытянутая конформация, отвечающая минимуму потенциальной конформационной энергии. В зависимости от конкретного химического строения полимера эта конформация может представлять собой плоский трансзигзаг (у карбоцепных полимеров с простыми С—С-связями и без массивных боковых групп), спираль (у макромолекул с массивными боковыми группами) и некоторые другие. Для реализации такой конформации необходимо наличие силы, непозволяющей макромолекуле проявить свою гибкость и свернуться в клубок. (Это может быть внешнее или внутреннее растягивающее напряжение, поток с продольным градиентом скорости или межмолекулярное взаимодействие полимерных цепей в кристалле или жидком кристалле).

При замораживании водных растворов высокомолекулярных соединений резко падает подвижность звеньев макромолекул, снижается степень гидратации и усиливается межмолекулярное взаимодействие полимерных цепей; вследствие больших напряжений, обусловленных возрастанием объема при замерзании воды, и практической невозможности перемещения звеньев разрываются валентные связи цепи (криолиз). Так, при замораживании картофеля, в состав которого входят крахмал и вода, макромолекулы крахмала деструктируются с одновременным присоединением молекул воды, образуя низкомолекулярные сахаристые вещества и декстрины, в результате чего картофель приобретает сладкий вкус.

При замораживании водных растворов высокомолекулярных соединений резко падает подвижность звеньев макромолекул, снижается степень гидратации и усиливается межмолекулярное взаимодействие полимерных цепей; вследствие больших напряжений, обусловленных возрастанием объема при замерзании воды, и практической невозможности перемещения звеньев разрываются валентные связи цепи (криолиз). Так, при замораживании картофеля, в состав которого входят крахмал и вода, макромолекулы крахмала деструктируются с одновременным присоединением молекул воды, образуя низкомолекулярные сахаристые вещества и декстрины, в результате чего картофель приобретает сладкий вкус.

Взаимодействие полимерных молекул с твердыми телами приводит к существенному изменению всего комплекса их свойств. Это связано о тем, что адсорбционное взаимодействие на границе раздела уменьшает молекулярную подвижность цепей и в ходе формирования полимерного материала, и при его эксплуатации, а это приводит к изменению структуры граничного слоя, изменению температур, при которых в граничных слоях происходят термодинамические и структурные переходы, и к ряду сопутствующих явлений [ 18—21 ]. Между тем структура граничного слоя и условия ее формирования прежде всего зависят от характера адсорбции и определяются прежде всего структурой собственно адсорбционного слоя. Таким образом, проблема межмолекулярных взаимодействий в наполненных и армированных системах — это также проблема адсорбции. Следует отметить еще один аспект данной проблемы — влияние адсорбции на процессы синтеза высокомолекулярных соединений, протекающие на границе раздела фаз с твердыми телами [1 ]. Адсорбция растущих полимерных цепей переменного молекулярного веса и изменяющегося молекулярно-весового распределения существенным образом изменяет кинетические условия реакции, а в случае получения трехмерных пространственных сеток влияет также на их структуру [22, 23]. Следовательно, адсорбционные явления играют важную роль не только в процессах переработки или эксплуатации полимерных материалов, но и при их синтезе.

До сих пор нет работ, в которых бы теоретически рассматривалось межмолекулярное взаимодействие полимерных цепей в адсорбционном слое и его роль в структуре адсорбционного слоя. В работах Ю. С. Липатова, Л. М. Сергеевой и сотрудников развиваются представления принципиально иного содержания, согласно которым на поверхность макромолекул переходят не изолированные макромолекулы, а их агрегаты, возникающие в растворах уже при относительно невысоких концентрациях [37, 38, 161 ]. Такой подход приводит к иному рассмотрению структуры адсорбционного слоя с точки зрения явлений структурообразования в растворах полимеров. Однако авторы не рассчитывали толщину слоев из-за отсутствия количественных данных о процессах структурообразования в растворах.

5. Взаимодействие полимерных молекул друг с другом и влияние растворителя на адсорбцию характеризуется двумя константами /Ci и /С2, а конкурентная адсорбция растворителя не учитывается.

При выводе изотермы не учитывалась конкурентная адсорбция растворителя. Симха и Фриш [174] показали, что если не рассматривать взаимодействия полимера с растворителем, то адсорбция растворителя не влияет на характер изотермы, за исключением того, что состояние насыщения достигается при более высоких концентрациях раствора. Они также рассмотрели взаимодействие полимерных сегментов путем введения понятия об отражающем барьере Е, благодаря которому уже адсорбированные сегменты создают препятствие для дальнейшей адсорбции. Высота барьера определяется числом петель, ограничивающих доступ к адсорбционным центрам, и является функцией степени покрытия поверхности 9. Благодаря этому взаимодействию величина (v) будет выражаться уравнением

Адсорбционное взаимодействие полимерных молекул с поверхностью, которое имеет место в наполненных системах, можно рассматривать как процесс, приводящий к перераспределению межмолекулярных связей в системе и к образованию дополнительных узлов физической структурной сетки вследствие взаимодействия сегментов с поверхностью. Образование дополнительных узлов должно снижать молекулярную подвижность как результат структурирования системы. Можно ожидать, что в зависимости от условий получения наполненного полимера и типа взаимодействия цепей с поверхностью число дополнительных узлов будет различно, а следовательно, и свойства поверхностного слоя полимера также будут отличаться. Первым актом образования поверхностной пленки (лакового покрытия, клеевого соединения и т. п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверхностных слоев будут различными.

Адсорбционное взаимодействие полимерных молекул с твердыми телами на границе раздела уменьшает подвижность цепей и в процессе формирования полимерного материала, и при его эксплуатации, что приводит к изменению структуры граничного слоя, изменению температур, при которых в граничных слоях происходят термодинамические и структурные переходы, и к ряду сопутствующих явлений.

фекты уменьшения плотности упаковки в присутствии наполнителя выражены в значительно большей степени для образцов, полученных отливкой из растворов, чем получаемых прессованием. Это связано с тем, что в ходе формирования полимерного материала взаимодействие полимерных молекул или молекулярных агрегатов с поверхностью наполнителя изменяет условия протекания релаксационных процессов. Вследствие взаимодействия цепей с поверхностью происходит ограничение подвижности цепей и элементов надмолекулярных структур, что приводит к возникновению неплотно упакованной структуры. Совершенно очевидно, что в том случае, когда протекание релаксационных процессов в наполненном полимере облегчено, наполнитель будет оказывать меньшее действие на процессы структурообразования.

Взаимодействие полимеров с низкомолекулярными реагентами может осуществляться в массе каучука, при приготовлении резиновой смеси, в растворе или эмульсии. Специфическим методом модификации является вулканизация каучука в присутствии непредельных соединений с функциональными группами, приводящая к образованию микрогетерогенной системы с интересным комплексом свойств [32, 33].

2. Взаимодействие полимеров, содержащих эпоксидные группы, с первичными аминами [61], или фенолами, в которых имеется алифатическая спиртовая группа [63]:

V.2. ВЗАИМОДЕЙСТВИЕ ПОЛИМЕРОВ С НАДКИСЛОТАМИ

V.2. Взаимодействие полимеров с надкислотами 74

2. Взаимодействие полимеров или макрорадикалов друг с другом. В основе этих способов получения блок- и привитых сополимеров лежит конденсация различных полимерных или олигомер-ных блоков, содержащих функциональные группы, или рекомбинация макрорадикалов различного химического состава:

Активировать химические реакции в полимерах механические напряжения могут и в тех случаях, когда они не вызывают разрыва макромолекул. Так, например, образцы или изделия из эластомеров и их вулканизатов быстро разрушаются в присутствии небольших концентраций озона, если находятся в растянутом состоянии. При приложении многократных деформирующих напряжений быстрее протекает взаимодействие полимеров с кислородом, приводящее к разрыву макромолекул. Механическая активация химических реакций в полимерах объясняется изменением направления химической реакции, например распада озонидов, и ускорением роста трещин. При замораживании картофеля возникающие механические напряжения вызывают разрыв молекул крахмала с образованием более низкомолекулярных веществ типа

Химическое взаимодействие полимеров с кислородом лежит » основе реакций окисления и окислительного разрушения органических полимеров. Сам процесс окисления может ускоряться и активнее развиваться под действием многих факторов: теплового (термоокислительное старение), солнечного света, излучений (световое, радиационное старение), солей металлов переменной ва-

Mace-спектрометрия широко применяется при исследовании механизма и кинетики химических превращений в полимерах. Высокая чувствительность метода, быстрота анализа (сотни анализов в секунду), возможность наблюдения за отдельным веществом в смеси обусловили возможность исследования самых начальных стадий разрушения полимеров в процессах термической, фотохимической, механической деструкции. Одновременное изучение состава и кинетики образования летучих продуктов в этом случае позволяет получить данные, характеризующие взаимодействие полимеров с излучениями. Здесь с масс-спектрометрией не может конкурировать ни один другой физический метод.

Взаимодействие полимеров с красителями при совместном ме-ханодиспергировании дает изменение спектральной характеристики красителя (рис. 212), образуя своеобразный окрашенный комплекс, который можно использовать для окрашивания пластмасс в тех случаях, когда необходима прозрачность и особая устойчивость красителя.

6. Сополимеризация полимеров с неорганическими веществами и прививка на твердые поверхности. К этому типу реакций относится взаимодействие полимеров, например с SiOz, A12O3, ТЮ2, ZnO, MgO, KC1, LiF, BaO, BaS, ZnS, CaCO3, BaSO4, NaCl, SiC, металлами при вальцевании и вибропомоле. Это направление является одной из новых областей механохимии, имеющей большое будущее. Описанным опотобом можно получать своеобразные минерально-органические сополимеры с неизвестными до настоящего времени свойствами.

34. Механохимичеекое взаимодействие полимеров с красителя-




Выделившееся основание Взаимодействии карбоновых Взаимодействии органических Взаимодействии растворов Взаимодействии сероуглерода Взаимодействии третичных Взбалтывании постепенно Взрывчатыми веществами Взрывного разложения

-
Яндекс.Метрика