Главная --> Справочник терминов


Вынужденно эластические При малых деформациях амплитуда практически не влияет на Гм и ее следует рассматривать как условную температуру, при которой теряется высокоэластичность полимера при конкретных условиях испытания (частоте внешнего воздействия). При достаточно больших напряжениях (влияющих на время т и изменяющих структуру полимера) возникают качественно новые явления (вынужденно-эластическая деформация и разрушение).

Удлинения, возникающие на участке // кривой растяжения 2, после снятия нагрузки уменьшаются незначительно. Так как без приложения внешних напряжений тепловое движение в полимерном стекле не способно заметно изменять конформации макромолекул, фиксированные молекулярными взаимодействиями, то уже развившаяся вынужденно-эластическая деформация после снятия нагрузки оказывается фиксированной. Однако при нагревании полимера выше Тс, когда подвижность участков макромолекул возрастает, вынужденно-эластическая деформация полностью релак-сирует.

этом значительная вынужденно-эластическая деформация не исчезает в стеклообразном полимере после снятия нагрузки, хотя и обусловлена развертыванием молекулярных клубков под действием внешнего деформирующего усилия. Охлаждение полимера да температуры ниже Тс может привести и к потере способности к вынужденно-эластической деформации — полимер перейдет в хрупкое состояние. Существенно важной чертой полимерных стекол является то, что и при Т<.ТС в них самопроизвольно происходят релаксационные переходы, связанные с перемещением молекулярных группировок, меньших, чем размер сегмента. Это приводит к ди^сипа-ции энергии, в том числе и энергии удара, и делает полимерны^ стекла существенно более стойкими к удару по сравнению с низкомолекулярными силикатными стеклами.

Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в направлении действия силы. Ориентированные эластомеры можно охладить до Т<ТС и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство: их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а прочность и модуль при деформации в перпендикулярном направлении меньше, чем у исходного неориентированного полимера.

Одним из основных видов деформации в вершине трещины, растущей в хрупком полимере, является вынужденно-эластическая деформация. Несмотря на то что полимер в целом не обнаруживает никаких признаков вынужденной эластичности, в микрообъеме может наблюдаться перемещение сегментов и их последующее разрушение. Так, при нагревании до температуры хрупкости (Т = Тхр), когда шейка в образце еще не развивается, в микрообъеме в вершине трещины может развиваться значительная вынужденно-эла-

невелико и внешне вынужденно-эластическая деформация не проявляется, наибольшие затраты энергии при разрушении идут на деформацию и связанное с этим рассеяние механической энергии в виде теплоты. Особенно сильно поглощается механическая энергия при образовании микротрещин. Чем больше образуется микротрещин (например, при ударе), тем труднее разрушить полимер, тем выше его стойкость к ударным нагрузкам. Образование микротрещин часто проявляется в виде повеления («серебрения») образца в месте удара.

По мере понижения температуры величина а„ возрастает, так ьак для перегруппировки цепей требуются все большие напряжения. Пока долговечность (сгр. 221) материала при данном напря-жении велика, развивается вынужденно-эластическая деформация. При некоторой достаточно низкой температуре напряжение, необходимое для перегруппировки участков цепи, соответствует уже настолько малой долговечности, что величина а достигает значения хрупкой прочности (tfu — о\р), и происходит хрупкое разрушение материала. Температура, ниже которой полимер разрушается под действием этого напряжения, называется температурой хрупкости (^ц). При тем л ер и ту ре хрупкости предел вынужденно^ эластичности равен хрупкой прочности4.

гает интервала стеклования, вынужденно-эластическая деформация становит ся быстро обратимой. Образец расширяется и, если опыт проводится в уело виях сжатия при малой нагрузке, на термомеханической кривой появляется "отрицательная" деформация. Чем выше давление, приложенное к порошка образному полимеру при таблетировании, тем больше отрицательная дефор мация и тем сильнее искажается форма термомеханической кривой. В это\ случае температура стеклования соответствует понижающейся, а не повы шавшейся ветви термомеханической кривой.

По мере понижения температуры величина а„ возрастает, так ьак для перегруппировки цепей требуются все большие напряжения. Пока долговечность (сгр. 221) материала при данном напряжении велика, развивается вынужденно-эластическая деформация. При некоторой достаточно низкой температуре напряжение, необходимое для перегруппировки участков цепи, соответствует уже настолько малой долговечности, что величина а достигает значения хрупкой прочности (сти = о\р), и происходит хрупкое разрушение материала. Температура, ниже которой полимер разрушается под действием этого напряжения, называется температурой хрупкости (7"зд). При температуре хрупкости предел вынужденной эластичности равен хрупкой прочности1.

По мере понижения температуры величина ов возрастает, так ьак для перегруппировки цепей требуются все большие напряжения. Пока долговечность (сгр. 221) материала при данном напряжении велика, развивается вынужденно-эластическая деформация. При некоторой достаточно низкой температуре напряжение, необходимое для перегруппировки участков цепи, соответствует уже настолько малой долговечности, что величина а достигает значения хрупкой прочности (сти = о\р), и происходит хрупкое разрушение материала. Температура, ниже которой полимер разрушается под действием этого напряжения, называется температурой хрупкости (7"зд). При температуре хрупкости предел вынужденной эластичности равен хрупкой прочности1.

Вынужденно-эластическая деформация велика и необратима-при данной температуре (ниже Тс). Она вызывает ориентацию цепей в направлении деформирующих сил, повышает упорядоченность их взаиморасположения и приводит к анизотропии механических свойств. Бели в соответствии с современными представлениями [146, 168, 169] о надмолекулярной организации полимеров-считать самостоятельным структурным элементом, участвующим в деформации, пачку, а не единичную щепь, то в ориентационлой. перестройке должны участвовать жак пачки, или структурные элементы высших порядков, так и связывающие их цепи [170, 171].

Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Тм. с определяется как температура, которой соответствует максимум механических потерь*. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет на Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникают качественно новые явления (вынужденно-эластические деформации и разрушение). Закономерности, аналогичные представленным на рис. 11.11 и 11.12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные

стеклования ав близок к 0 и в образце уже при малых напряжениях развивается высокоэластическая деформация. По мере понижения температуры 0В возрастает, поскольку для перегруппировки участков цепей требуются все большие напряжения, и в конце концов становится выше прочности испытываемого полимера (стп). Иными словами, при достаточно низкой температуре разрыв макромолекул под действием приложенной силы, а следовательно, и нарушение целостности материала происходит раньше, чем успевают переместиться их отдельные участки. Эта температура называется температурой хрупкости полимера (7\р). Дальнейшее понижение температуры несколько увеличивает напряжение, необходимое для разрыва (стп), но разрыву уже не предшествуют заметные вынужденно-эластические деформации материала. Кривая растяжения такого образца полимера показана на рис. V. 18 (кривая 2).

вынужденно-эластические 156 Диаграмма

му никакой перегруппировки сегментов под действием силы не происходит. Это и определяет незначительную величину деформации при разрушении. Вынужденно-эластические деформации в хрупких полимерах развиться не успевают, но вследствие наличия остаточного свободного объема в стеклообразном полимере (порядка 2,5%) происходит его хрупкое разрушение при деформации около 1% (или немного больше), а разрушение силикатных стекол — при деформации около 0,1%.

Как уже указывалось, вынужденно-эластические деформации могут проявляться только под влиянием больших напряжений. Поэтому после прекращения действия деформирующего усилия скорость исчезновения аыцуждецно-эластичес^их деформаций очень мала и при температуре ниже Тс опи не снимаются. При температурах пыше 7Y образец полностью восстанавливает свои размеры. Таким образом, деформация стеклообразных полимеров всегда яо-С]П обратимый характер.

Влияние энергии межмолекулярного взаимодействия. С усилением межмолскулярного взаимодействия температурный интервал вынужденной эластичности расширяется. Это объясняется образованием за счет полярных групп прочных связей (узлов) между цепями, в результате чего происходит увеличение хрупкой прочности. В то же время эти свяли достаточно лабильны, ц при приложении больших напряжений возможны перегруппировки уча-стков цепей, Приводящие к более равномерному нагружепню всей молекулярной сетки. Это означает, что вынужденно-эластические деформамии могут происходить при более низких температурах, следовательно, кривая зависимости aB = f(T) имеет небольшой

при механических воздействиях существенно не изменяется. При больших же напряжениях и деформациях возникают качественно новые явления (вынужденно-эластические деформации и разрушение). Большие напряжения влияют существенно и на время релаксации т, а возникающие при этом деформации изменяют структуру полимера.

Как уже указывалось, вынужденно-эластические деформации могут проявляться только под влиянием больших напряжений. Поэтому после прекращения действия деформирующего усилия скорость исчезновения вынужденно-эластических деформации очень мала и при температуре ниже Тс они не снимаются. При температурах пыше 7V образец полностью восстанавливает свои размеры. Таким образом, деформация стеклообразрнях полимеров всегда пост обратимый характер.

Как уже указывалось, вынужденно-эластические деформации могут проявляться только под влиянием больших напряжений. Поэтому после прекращения действия деформирующего усилия скорость исчезновения вынужденно-эластических деформации очень мала и при температуре ниже Тс они не снимаются. При температурах пыше Тг образец полностью восстанавливает свои размеры. Таким образом, деформация стеклообразргых полимеров всегда пост обратимый характер.

Влияние энергии межмолекулярного взаимодействия. С усилением межмолекулярного взаимодействия температурный интервал вынужденной эластичности расширяется. Это объясняется образованием за счет полярных групп прочных связей (узлов) между цепями, в результате чего происходит увеличение Хрупкой прочности. В то же время эти свяли достаточно лабильны, ц при приложении больших напряжений возможны перегруппировки участков цепей, Приводящие к более равномерному нагружещно всей молекулярной сетки. Это означает, что вынужденно-эластические дефор'мачни могут происходить при более низких температурах, следовательно, кривая зависимости ОЕ = /(Т) имеет небольшой

Наиболее чувствительны к действию жидких сред вынужденно-эластические деформации некоторых аморфных и кристаллических полимеров в застеклованном состоянии (рис. IV. 18).




Выделяется хлористый Вакуумной установке Вальденовским обращением Валентных электрона Валентных состояниях Валентного электрона Ванадиевых катализаторов Веществами содержащими Вещественных доказательств

-
Яндекс.Метрика