![]() |
|
Главная --> Справочник терминов Усталостной выносливостью Пока еще основными потребителями композитов являются авиационная и космическая промышленность. Их использование не только позволяет получать высокоэкономичные и надежные конструкции, но и дает возможность реализовать перспективные аэродинамические схемы, например истребитель с крылом обратной стреловидности. По многим главным физико-химическим свойствам — прочности, ударной вязкости, усталостной прочности и др.— композиты выигрывают у традиционных материалов в 5 раз, а иногда и более. — отношение расчетного предела усталостной прочности к средней статической прочности при разрушении образцов, — если не наблюдается усталостное ослабление вследствие избыточного термонагрева, то сопротивление ПЭ со средней и высокой молекулярной массой переменной нагрузке, отнесенное к значению статического напряжения, при котором либо достигается вынужденная эластичность, либо происходит разрушение, значительно выше, чем полистирола. Так, при сравнимых молекулярных массах ~2-10б для полиэтилена расчетное отношение предельной усталостной прочности к напряжению при вынужденной эластичности составляет ~ 0,90 по сравнению со значением 0,3 этого отношения для полистирола; Детали из полиформальдегида характеризуются очень низким коэффициентом трения по стали (для сухих поверхностей 0,1— 0,3), почти не изменяющимся в интервале 20—120° и при нагрузке до 175 кг!смг. По сопротивлению истирающим усилиям и по усталостной прочности полиформальдегид превосходит большинство термопластичных полимеров. Его используют для прядения волокон или изготовления пленок из расплава полимера с последующей ориентацией в процессе горячей вытяжки. Из полимера изготовляют также различные детали машин (шестерни, зубчатые передачи, подшипники, кулачковые механизмы), арматуру для приборов и аппаратов. При правильном выборе типа и количества мягчителей наблюдается повышение эластичности и усталостной прочности при многократных деформациях вследствие лучшего диспергирования наполнителей и других ингредиентов в резиновой смеси. Повышенное содержание мягчителей приводит к понижению предела прочности при растяжении, сопротивления раздиру, модуля, твердости и уменьшению теплообразования при многократных деформациях. По сопротивлению истиранию это волокно значительно уступает полиамидны;,! волокнам. По усталостной прочности оно превосходит вискозное воло кпо, обладает высокой светостойкостью, превосходя в этом отношении большинство других волокон. Полиэфирное волокно обладает высокой стойкостью к действию кислот и окислителей на холоду и негорючестью. Кручение. Осковпаи цель кручения кордной нити — повышение ее усталостной прочности. Обычно корд пан нить подвергается двум крушениям. Первое кордное кручение проводится на кордных коль-цекрутильных машинах К-128-И для хлопчатобумажной пряжи (диаметр колец 89 мм, частота врапнлшя веретен 3780— 5000 об/мин, высота подъема плагки 190 мм). На этих машинах нити еообщаетси дополнительная крутка (примерно 400 питков/м). Перед вторым кручением крученую пряжу рекомендуется перегнать на специальных перегонных машинах для выравнивания крутки и некоторого снижении удлинения. Рис. 5.43. Зависимость усталостной прочности о№ от числа циклов N (а) н динамической усталости ЛГц от амплитуды напряжений ос двух резин (ор арг—кратковременная прочность) Возможности промышленного применения наноструктурных материалов в качестве конструкционных во многом определяются их усталостным поведением. Усталость — характеристика циклического поведения материалов и повышение прочности металлов и сплавов в наноструктурном состоянии позволяет ожидать увеличения также их усталостной прочности. Однако пока довольно мало известно об усталостном поведении наноструктурных материалов [365-367], хотя тенденция значительного повышения усталостной прочности и долговечности при создании наноструктур методами ИПД наблюдается достаточно отчетливо. Как следует из данных табл. 6.1, предел выносливости нано-структурного Ti сильно зависит от его структурного состояния и по сравнению с исходным Ti повышается более чем в 2 раза, достигая 500 МПа. Это значение также является рекордным и приближается к уровню усталостной прочности для высокопрочного титанового сплава Ti-6Al-4V ELI [414]. Видно, что повышение усталостной прочности коррелирует с повышением микротвердости, предела прочности и текучести, а также появлением металлографической и кристаллографической текстуры. На рис. 6.13 приведены кривые усталости для исходного и наноструктурного Ti, которые свидетельствуют, что циклическая прочность повышается как в области многоцикловой, так и малоцикловой усталости. капроамида. Эти волокна характеризуются высокой прочностью, термостойкостью и усталостной выносливостью. Полиамидные волокна обладают гладкой поверхностью, что ухудшает сцепление их с другими полимерами. Устранение чрезмерной гладкости ПА достигается путем формирования их через фильеры с профилированными отверстиями. Прочность связи резин с необработанными химическими волокнами, такими как вискозное, полиамидное и полиэфирное волокно, очень мала. Для повышения адгезии между волокнами и эластомерами волокна рекомендуется обрабатывать пропиточными составами. Полиамидные волокна обычно обрабатывают латексно-смоляными пропиточными составами на основе натурального латекса или водных дисперсий синтетических эластомеров. В процессе вальцевания полиамидное волокно, обладающее высокой гибкостью и усталостной выносливостью, проявляет высокую устойчивость к измельчению. щее высокой гибкостью и усталостной выносливостью, проявляет высокую устойчивость к измельчению. Применяемые материалы, С учетом основных требований к ездовым камерам формируются требования к камерной, вентильной, клеевой резинам и другим материалам. Камерные резиновые смеси могут изготавливаться из каучуков общего назначения: изопреновых (НК, СК.И-3), бутадиенстирольных (БСК) и их композиций. Однако задача улучшения качества камер решается за счет перевода их производства на резины из бутилкаучука (БК), характеризующиеся низкой газопроницаемостью, повышенной стси костью к старению и усталостной выносливостью. При применении БК в камерах повышается безопасность шин, так как ^амеры лучше сохраняют прочностные свойства в процессе дли- Ткани являются важным конструкционным армирующим материалом многих резиновых изделий (покрышек, ремней, транспортерных лент, рукавов, резиновой обуви и др.) и определяют их каркасность — стабильность формы и размеров, прочностные свойства, устойчивость к деформациям. Они должны обладать высокими прочностными характеристиками, малым остаточным удлинением, тепло- и влагостойкостью, износостойкостью, малой жесткостью при изгибе, высокой усталостной выносливостью. Продукт получается на АФ "Барва" (г.Ивано-Франковск). Изучена эффективность дисульфаля МГ в сравнении с традиционно применяемыми сульфенамидными ускорителями в протекторных и обкладочных резиновых смесях для грузовых, с/х, крупно- и сверхкрупногабаритных шин. Резиновые смеси с ди-сульфалем МГ на основе СКИ-3 с техуглеродом П514 или П324 имеют вулканизационные характеристики, равноценные характеристикам смесей с преимущественным содержанием сульфенамидного ускорителя. Вулканизаты на основе дисульфаля МГ по упруго-прочностным свойствам не уступают контрольным. Сопротивление многократному растяжению опытных и контрольных резин либо одинаково, либо резины с дисульфалем МГ характеризовались более высокой усталостной выносливостью, особенно после теплового старения. Прочность связи с пропи- ДФА-Г был опробован в составе протекторных смесей для КГШ на основе каучуков НК и СКИ-3 (30:70) и в протекторе грузовых шин (СКИ-3, СКД; СКМС-30 АРКМ-15=40:20:40). Полученные данные показывают, что введение ДФА-Г не приводит к ухудшению технологических свойств резиновых смесей, в том числе не увеличивается склонность к реверсии. Вулкани-заты с ДФА-Г отличаются повышенной стойкостью к тепловому старению и усталостной выносливостью. Стабилизирующая активность ДФА-Г позволяет частично исключить из состава резин серийно применяемые стабилизаторы диафен ФП (до 0,5 К 1993 году были созданы основные рецептуры шинных резин с учетом особенностей технологических процессов и оборудования проекта АП «Шина». Так, разработана рецептура для беговой части протектора из 100 % крошкообразного бутадиен-стирольного каучука, обеспечивающая высокое сцепление с дорогой и повышенную стойкость к механическим повреждениям. Определена рецептура резиновой смеси для боковины шины на основе комбинации крошкообразных изопрено-вого и дивинилового каучуков, характеризующихся высокой усталостной выносливостью, атмосфере стойкостью и стойкостью к высокотемпературной вулканизации, определен состав резин для крепления анидного и полиэфирных кордов (СКИ-3 и СКИ-3-01) с оптимальным комплексом адгезионных и усталостных свойств. Выданы рекомендации по составам резины гермослоя, различающихся типами полимеров: на основе комбинации хлорбутилкаучука и натурального каучука (80 % ХБК + 20 % НК) и 100 % бромбутилкаучука. Резины на основе карбоксилсодержащих и других каучуков с функциональными группами. Карбоксилсодержащие каучуки, вулканизованные окислами металлов, обладают высокой усталостной выносливостью. Однако они не нашли широкого применения в .связи с быстрой подвулканизацией при изготовлении резиновых смесей в производственных условиях. При вулканизации карбоксилсодержащих каучуков АФФС совместно с окисью цинка получаются резины, физико-механические показатели которых выше, чем у резин, полученных с тиурьамом и той же окисью174. Резины на основе карбоксилсодержащих и других каучуков с функциональными группами. Карбоксилсодержащие каучуки, вулканизованные окислами металлов, обладают высокой усталостной выносливостью. Однако они не нашли широкого применения в .связи с быстрой подвулканизацией при изготовлении резиновых смесей в производственных условиях. При вулканизации карбоксилсодержащих каучуков АФФС совместно с окисью цинка получаются резины, физико-механические показатели которых выше^ чем у резин, полученных с тиурьамом и той же окисью174. В работах Брауна {12], Долгоплоска и Тиняковой [13], Догадкина и Тарасовой [79] экспериментально показано, что сочетание легко подвижных связей солевого типа с относительно редкой сеткой из валентных связей позволяет получать вулканизаты с прочностью, достигающей ~ 600 к/7 см2, и высокой усталостной выносливостью. Повышение прочностных свойств объясняется благоприятным влиянием на ориентацию молекулярных цепей слабых солевых связей (энергия диссоциации 3—5 ккал/моль). Солевые связи в процессе деформации легко разрываются и затем образуются вновь на поверхности окислов металлов, что способствует диссипации напряжений перенапряженных участков цепей. Сетка из прочных валентных связей обеспечивает целостность пространственной структуры вулканизата [3]. низаты, полученные указанными двумя способами, обладают по сравнению с серными резинами большей теплостойкостью и усталостной выносливостью. Однако, применение в вулканизатах с алкилфенолформальдегидными смолами стабилизаторов и антиозонаятов аминного типа приводит к резкому ^ухудшению физико-механических свойств резин [72]. В связи с этим перспективы использования указанных вулканизующих систем в производстве резиновых изделий на основе диеновых эластомеров зависят от того, будут ли найдены пути их защиты от воздействия озона. ![]() Устойчивые кристаллические Устойчивым соединением Устойчивое состояние Углеводороды окисляются Устойчивость полимерных Устойчивости различных Устройства обеспечивающие Утомления полимеров Увеличения эффективности |
- |