Главная --> Справочник терминов


Углеводороды обладающие Адсорбционная способность «молекулярных сит» основана на различном соотношении величины молекул и диаметров пор. Молекулы, имеющие размер значительно меньший, чем диаметр пор, сорбируются легко, в то время как более крупные молекулы не сорбируются совсем. Указанным методом можно отделять насыщенные углеводороды нормального строения от углеводородов изостроения, циклических и ароматических углеводородов.

Углеводороды нормального строения Октановое число Углеводороды изостроения Октановое число

Описанные ранее процессы характеризуются довольно высокими температурами. Выход углеводородов сильно разветвленного строения за один проход получается сравнительно невысокий, в связи с чем приходится из продуктов реакции выделять углеводороды нормального строения и возвращать их снова на реакцию. Разработанный фирмой «Стандарт ойл процесс» (процесс изомейт) лишен указанного недостатка, поскольку он проводится при низкой температуре — от 93 до 120°, которая способствует получению изомеров сильно разветвленного строения. Катализатором является хлористый алюминий, промотированный безводным хлористым водородом. Сырьем для процесса могут служить пентан-гексановые или узкие гексановые фракции. Указанным способом может перерабатываться также и бутан-пентановая фракция. Процесс проводится в присутствии водорода.

Важнейшими группами нефтепродуктов являются топлива и смазочные масла. Нефтяные топлива разделяются на моторные, применяемые в двигателях, и котельные — для сжигания в топках паровых котлов и в промышленных печах. Первые из них подразделяются в свою очередь на карбюраторные, дизельные и топлива для реактивных авиационных двигателей. Карбюраторным топливом для двигателей внутреннего сгорания с карбюраторами является бензин, важнейшей характеристикой которого является его стойкость к детонации. Детонация — это чрезмерно быстрое сгорание топливной смеси в цилиндре карбюраторного двигателя, нарушающее нормальную работу двигателя. Наиболее склонны к детонации предельные углеводороды нормального строения, тогда как предельные углеводороды с сильно разветвленной цепью детонируют слабо. Способность бензина к детонации оценивается октановым числом. В качестве стандарта принимается w-гептан и 2,2,4-триме-тилпентан (изооктан), октановые числа которых считают равными О и 100 соответственно:

Адсорбционная способность «молекулярных сит» основана на различном соотношении величины молекул и диаметров пор. Молекулы, имеющие размер значительно меньший, чем диаметр пор, сорбируются легко, в то время как более крупные молекулы не сорбируются совсем. Указанным методом можно отделять насыщенные углеводороды нормального строения от углеводородов пзостроения, циклических и ароматических углеводородов.

Описанные ранее процессы характеризуются довольно высокими температурами. Выход углеводородов сильно разветвленного строения за один проход получается сравнительно невысокий, в связи с чем приходится из продуктов реакции выделять углеводороды нормального строения и возвращать их снова на реакцию. Разработанный фирмой «Стандарт ойл процесс» (процесс изомейт) лишен указанного недостатка, поскольку он проводится при низкой температуре — от 93 до 120°, которая способствует получению изомеров сильно разветвленного строения. Катализатором является хлористый алюминий, промотированный безводным хлористым водородом. Сырьем для процесса могут служить пен тан-гекса новые или узкие гексановые фракции. Указанным способом может перерабатываться также и бутан-пентановая фракция. Процесс проводится в присутствии водорода.

••-К действ.ию а зотн о и к и с.-л от ы предельные углеводороды относятся по-разному. Если углеводород имеет в молекуле третичный атом углерода (который вообще легче подвержен химическим воздействиям) , то такой углеводород можно окислить концентрированной азотной кислотой до двуокиси углерода.и низших жирных кислот (Марковников, Пони). Углеводороды нормального строения более устойчивы; они превращаются при действии азотной кислоты в нитро-производные, которые могут быть также получены по реакции Коновалова путем обработки некоторых парафинов разбавленной азотной кислотой при повышенной температуре или по Урбанскому и Слону — действием газообразной М2О4 на нагретые пары углеводородов (см. далее, стр. 173 и ел,).

Наиболее легко детонируют углеводороды нормального строения, например н-гептан, стойкость к детонации которого принята за 0. Наименее детонируют разветвленные углеводороды, например изооктан. Его стойкость к детонации принята за 100. Поэтому качество всех бензинов обычно оценивают с помощью «октанового числа». Так, если октановое число бензина равно 72, то это означает, что он ведет себя так же, как смесь 72% изооктана и 28% н-гептана.

Парафиновые углеводороды нормального строения образуют так называемые клатратныесоединения с мочевиной, располагаясь в пустотах ее кристаллической решетки. Эта особенность используется для отделения нормальных углеводородов и их производных от родственных соединений с разветвленной структурой. Нормальные углеводороды кристаллизуются с мочевиной в спиртовых или ацетоновых растворах.

Поэтому детонационную способность бензинов стали выражать в условных единицах — октановых числах, причем условно принято считать октановое число изооктана равным 100. Оказалось, что наибольшей детонационной способностью обладают бензины, содержащие углеводороды нормального строения, в частности н-гептан, октановое число которого условились считать равным нулю. Чтобы определить октановое число данного бензина, его испытывают на специальных двигателях с переменной степенью сжатия и сравнивают со смесями, содержащими в различном процентном соотношении «-гептан и изооктан. Если, например, детонационная способность данного бензина окажется равной детонационной способности смеси, состоящей из 80% изооктана и 20% н-гептана, то говорят, что данный бензин имеет октановое число 80.

кристаллы мочевины образуют «кристаллические поры», настолько узкие, что в них проникают углеводороды нормального строения, но не могут проникнуть углеводороды с разветвленной цепью. Поэтому кристаллы мочевины адсорбируют из смеси лишь углеводороды нормального строения, которые после растворения мочевины отделяются от водного слоя.

Каталитическое алкилирование изопарафинов олефинами впервые было осуществлено Ипатьевым и далее подробно исследовано А. В. Топчиевым и Я. М. Паушкиным, К. П. Лавровским, Ю. Г. Мамедалиевым, В. С. Гутыря и др. Сущность процесса алкилирования заключается во введении в молекулу углеводорода алкильной группы. Промышленное оформление процесс впервые получил в США в годы второй мировой войны. В промышленности чаще всего применяется алкилирование изопарафинов непредельными углеводородами. В результате реакций алкилирования получаются сильно разветвленные парафиновые углеводороды, обладающие хорошими антидетонационными свойствами.

Из парафиновых углеводородов природных if попутных газов для алкилирования обычно используют изобутан и изомеры пен-тана и октана. Нормальные парафиновые и нафтеновые углеводороды дают алкилаты, обладающие менее ценными свойствами. Из непредельных углеводородов чаще всего используют бути-лены, пропилен, амилены, которые также могут быть получены из природных и попутных газов путем их пиролиза и дегидрогенизации. С точки зрения антидетонационных свойств наилучшие алкилаты получаются при алкилировании изобутана бутиле-нами.

При гидрировании ароматических углеводородов получаются индивидуальные полициклические нафтеновые углеводороды, обладающие максимальной объемной теплотворной способностью и поэтому представляющие интерес как топливо для сверхзвуковой авиации [47, с. 319].

Каталитическое алкилирование изопарафинов олефинами впервые было осуществлено Ипатьевым и далее подробно исследовано А. В. Топчиевым и Я. М. Паушкиным, К. П. Лавровским, Ю. Г. Мамедалиевым, В. С. Гутыря и др. Сущность процесса алкилирования заключается во введении в молекулу углеводорода алкильной группы. Промышленное оформление процесс впервые получил в США в годы второй мировой войны. В промышленности чаще всего применяется алкилирование изопарафинов непредельными углеводородами. В результате реакций алкилировапия получаются сильно разветвленные парафиновые углеводороды, обладающие хорошими антидетонационными свойствами.

Из парафиновых углеводородов природных и попутных газов для алкнлирования обычно используют изобутан и изомеры пен-тана н октана. Нормальные парафиновые и нафтеновые углеводороды дают алкилаты, обладающие менее ценными свойствами. Из непредельных углеводородов чаще всего используют бути-лепы, пропилен, амилены, которые также могут быть получены из природных и попутных газов путем их пиролиза и дегидрогенизации. С точки зрения аптидотопационных свойств наилучшие алкилаты получаются при алкилировании изобутаиа бутиле-нами.

Восстановлением поливинилхлорида с помощью L1A1H4 или LiH получены углеводороды, обладающие свойствами, близкими к свойствам полиэтилена.

Сульфирование парафинов происходит лишь при продолжительном воздействии горячей концентрированной серной кислоты. При этом нормальные парафины, повидимому, являются более стойкими, так как даже при очень продолжительном нагревании их с серной кислотой соответственные сульфоновые кислоты образуются в сравнительно небольшом количестве. Напротив, углеводороды с разветвленной цепью реагируют в этом случае значительно легче. Повидимому, можно считать общим правилом, что парафины с разветвленной цепью гораздо легче реагируют с хлорсульфоновой кислотой, чем нормальные углеводороды i. Точно так же и по отношению к концентрированной азотной кислоте нормальные углеводороды являются более устойчивыми, чем вторичные и третичные парафины. Действительно, нормальные парафины в этих условиях не изменяются при комнатной температуре; даже после продолжительного нагревания до 100° .большую часть углеводородов можно получить обратно в неизменённом состоянии2. Третичные парафины сравнительно легко окисляются дымящей азотной кислотой с образованием жирных кислот, двуокиси углерода и небольшого количества нитросоединений. Вторичные углеводороды, обладающие не слишком низкой температурой

давлением, а неполярные, например углеводороды, обладающие

При переработке сырья с внешними эфирномасличными вместилищами водяной пар отделен от эфирного масла кутикулой или клеточной оболочкой вместилища, которые легко разрушаются при механических воздействиях и повышении температуры. При этом эфирное масло растекается по поверхности частиц сырья, и в соответствии с газовыми законами из него в первую очередь отгоняются углеводороды, обладающие высокой упругостью паров. Поэтому масло, полученное в начале процесса, богато углеводородами.

Сульфирование парафинов происходит лишь при продолжительном воздействии горячей концентрированной серной кислоты. При этом нормальные парафины, повидимому, являются более стойкими, так как даже лри очень продолжительном нагревании их с серной кислотой соответственные сульфоновые кислоты образуются в сравнительно небольшом количестве. Напротив, углеводороды с разветвленной цепью реагируют в этом случае значительно легче. Повидимому, можно считать общим правилом, что парафины с разветвленной цепью гораздо легче реагируют с хлорсульфоновой кислотой, чем нормальные углеводороды 1. Точно так же и по отношению к концентрированной азотной кислоте нормальные углеводороды являются более устойчивыми, чем вторичные и третичные парафины. Действительно, нормальные парафины в этих условиях не изменяются при комнатной температуре; даже после продолжительного нагревания до 100° .большую часть углеводородов можно получить обратно в неизменённом состоянии2. Третичные парафины сравнительно легко окисляются дымящей азотной кислотой с образованием жирных кислот, двуокиси углерода и небольшого количества нитросоединений. Вторичные углеводороды, обладающие не слишком низкой температурой

При переработке сырья с внешними эфирномасличными вместилищами водяной пар отделен от эфирного масла кутикулой или клеточной оболочкой вместилища, которые легко разрушаются при механических воздействиях и повышении температуры. При этом эфирное масло растекается по поверхности частиц сырья, и в соответствии с газовыми законами из него в первую очередь отгоняются углеводороды, обладающие высокой упругостью паров. Поэтому масло, полученное в начале процесса, богато углеводородами.

Сульфирование парафинов происходит лишь при продолжительном воздействии горячей концентрированной серной кислоты. При этом нормальные парафины, повидимому, являются более стойкими, так как даже лри очень продолжительном нагревании их с серной кислотой соответственные сульфоновые кислоты образуются в сравнительно небольшом количестве. Напротив, углеводороды с разветвленной цепью реагируют в этом случае значительно легче. Повидимому, можно считать общим правилом, что парафины с разветвленной цепью гораздо легче реагируют с хлорсульфоновой кислотой, чем нормальные углеводороды *. Точно так же и по отношению к концентрированной азотной кислоте нормальные углеводороды являются более устойчивыми, чем вторичные и третичные парафины. Действительно, нормальные парафины в этих условиях не изменяются при комнатной температуре; даже после продолжительного нагревания до 100° .большую часть углеводородов можно получить обратно в неизменённом состоянии2. Третичные парафины сравнительно легко окисляются дымящей азотной кислотой с образованием жирных кислот, двуокиси углерода и небольшого количества нитросоединений. Вторичные углеводороды, обладающие не слишком низкой температурой




Улучшение механических Уменьшается количество Уменьшается плотность Уменьшается содержание Уменьшается уменьшение Уменьшает концентрацию Уменьшает растворимость Уменьшения интенсивности Удельного сопротивления

-
Яндекс.Метрика