![]() |
|
Главная --> Справочник терминов Зависимости приведенной В результате испытаний строят зависимости коэффициента морозостойкости от температуры. Эти зависимости позволяют, во-первых, определить температуру морозостойкости Тк на образцах любых форм и размеров; во-вторых, заранее определить свойства полимерного материала, работающего в условиях эксплуатации при различных режимах деформации (сжатии, растяжении или изгибе) и, в-третьих, заранее определить свойства полимерного материала, работающего не только в статических условиях, но и в условиях динамического нагружения. ров и прямая пропорциональность между lgWp и Igffo Для резин. Эти зависимости позволяют лишь весьма приблизительно прогнозировать работоспособность полимеров в разных условиях эксплуатации. При экспериментальном исследовании равновесия жидкость — пар неизбежны погрешности, обусловленные несовершенством приборов, методой исследования и анализа [15], которые могут быть двух типов: случайные и систематические. Для выявления случайных погрешностей применяют графическую обработку опытных данных, основанную на связи между непрерывно изменяющимися свойствами исследуемых систем: состав пара — состав жидкости, температура кипения — coctae жидкости (пара) . Диаграммы, изображающие эти зависимости, позволяют судить о величине и характере случайных ошибок. Предложена зависимость коэффициента относительной летучести а от составов жидкойч х и паровой фаз у для обработки опыт-'ных данных равновесия [14] Приведенные графические зависимости позволяют в упрощенном виде объяснить некоторые вопросы, связанные с потерей конденсата в пласте. С повышением давления до 2,5 МПа значение К. уменьшается, что способствует конденсации пентана (^ = const). Затем дальнейшее повышение давления способствует увеличению К, что связано с переходом пентана из жидкой в паровую фазу. Найденные зависимости позволяют синтезировать сополимеры необходимой Полученные зависимости позволяют определить пластоэластические свойства с достаточной для практических целей точностью; область точных оценок лежит в зоне средних и высоких значений показателя жесткости каучука по Дефо. Представленные зависимости позволяют выбрать конструкцию гомогенизатора и режимы течения .дисперсии для получения капель требуемого размера. Одна из немногих попыток определения комплексной термостабильности ПВХ по данным двух приборов была сделана в [112]. Термостабильность на реометре "Инстроен" определяли при скорости сдвига 29,7 с~7 в температурном интервале 185 - 210 "С, а на пластографе Брабендера - при частоте вращения ротора 35 - 65 об/мин в интервале температур 165 - 185 "С. В качестве критериев термостабильности были выбраны время до появления окраски расплава tOK и время глубокого изменения цвета (от коричневого до черного) ?чер. Установленные в [112] зависимости позволяют сопоставлять данные, полученные в разных режимах течения, с целью прогнозирования поведения расплавов при различных температурно-деформационных воздействиях,' так как изменение окраски вследствие образования в полимере хромофорных группировок сопровождается снижением срока эксплуатации и ухудшением качества изделий из ПВХ. На основе рассмотренной модели рассчитаны универсальные зависимости средней концентрации диффундирующего компонента в волокне, его концентрации на поверхности и на оси волокна в зависимости от безразмерного параметра времени т (рис. 7.19). Эти зависимости позволяют рассчитать, используя данные индикаторного метода и метода средних концентраций, коэффициенты диффузии и тем самым охарактеризовать кинетику этого процесса. Ниже приводится пример расчета по данным работы {4]. Полученные зависимости позволяют рассчитать распределение нормальных напряжений в случае кругового течения в вискозиметрах «конус — плоскость»90- 91 и в так называемых дисковых вискозиметрах92, а также определить давление экструзии, развиваемое в бесчервячных дисковых экструдерах93. Полученные зависимости позволяют рассчитывать распределение нормальны: напряжении в вискозиметрах «конус — плоскость» и определять давление экструзии в дисковых экструдерах. Коэффициент полидисперсности (MwlMn), характеризующий ММР полимеров, определяет реологическое поведение полибутадиенов при высоких напряжениях сдвига [89]. Из зависимости, приведенной на рис. 9, следует, что коэффициент полидисперсности может быть найден па основании определения вязкости по Муни при 20 °С М20: Соответствующее разложение в ряд аналогичной зависимости приведенной логарифмической вязкости дает следующее соотношение: В процессе эксперимента снимают температурные зависимости проницаемости е' и потерь tg б при разных частотах (например, 50 Гц, 10 кГц, 1 МГц...). По этим данным для разных температур строят частотные зависимости е' и tg б. Если d0/d « 1 и Т0/Т л; 1, то-коэффициент &т можно не учитывать. Условие do/d « 1 справедливо практически всегда, поэтому изменением плотности полимеров, находящихся в электрических полях, обычно пренебрегают. На практике в самом деле То/Т » 1, ибо Т0 обычно выбирают равной комнатной (20 °С), а Т берут близкой к ней,;, затем вычерчивают зависимости приведенной проницаемости епр от приведенной частоты lg v при разных температурах. График кривой е„р = / (lg v) при температуре приведения переносят на прозрачную бумагу. Далее приведение производят перемещением кривых параллельно оси lg v до совпадения их с обобщенной кривой, которая в диапазоне приведения остается неизменной. Для кривых при температуре приведения Т0 и температуре Т характерна определенная разность температур (Т—Т0) и разность частот Igvi — lgv=lg&T. Величина lg 6Т определяет смещение каждой кривей е'т вдоль оси Igv до кривой при температуре приведения Т0. При этом нужно учитывать знаки lg йт: если смещение происходит вправо, то lgbr>0; если влево — отрицателен. Аналогично строят зависимости 8пр = е'пр (lg V)*. На основании полученных данных строят графики зависимости приведенной вязкости от концентрации раствора для двух температур и экстраполяцией их к нулевой концентрации находят характеристические вязкости при каждой температуре. Строят графики зависимости приведенной вязкости от концентрации, по которым находят характеристическую вязкость для трех фракций полистирола. Зная молекулярные массы и характеристические вязкости фракций, строят график зависимости IgM от \§М, по которому, согласно уравнению (III. 20), определяют параметры /С и а. '• Строят графики зависимости приведенной вязкости от концентрации для необлученного и облученного растворов полимеров. Экстраполяцией зависимостей к нулевой концентрации находят зна- Строят графики зависимости приведенной вязкости от концентрации для растворов полистирола в хорошем и плохом растворителях. Экстраполяцией полученных зависимостей к нулевой концентрации находят значение характеристических вязкостей. По формуле (III. 19) рассчитывают молекулярные массы полистирола Aft], и Мть соответственно в хорошем и плохом растворителях. Для расчета используют константы /С и а, приведенные в табл. III. 1, Полиэлектролитное набухание наблюдается также при изучении зависимости вязкости раствора слабого полиэлектролита от рН или от степени ионизации. При добавлении кислоты (или щелочи) к слабому полиоснованию (или слабой поликислоте) образуется полисоль, которая хорошо диссоциирована в водном растворе. Поэтому по мере нейтрализации увеличивается число одноименных зарядов в цепи, между ними возникают силы электроста-тического отталкивания, приводящие к тому, что конформации полиэлектролитных клубков становятся более вытянутыми. Изменение конформации сопровождается увеличением вязкости раствора в десятки и сотни раз (рис. IV. 4). Максимальное разворачивание наблюдается не в точке полной нейтрализации, а при а = 0,6 -Ь 0,8. При более высоких значениях а вязкость уменьшается, что объясняется повышением ионной силы раствора и экранированием зарядов в цепи. Повышение ионной силы приводит к подавлению полиэлектролитного набухания. Поэтому максимум на кривых зависимости приведенной вязкости от рН снижается при повышении концентрации полиэлектролита или при введении в раствор низкомолекулярных солей. На одном графике строят три кривые зависимости приведенной вязкости от концентрации для разбавлений раствора полиэлектролита, водой и солевыми растворами разных концентраций. График зависимости, имеющий прямолинейный характер, экстраполируют к нулевой концентрации полиэлектролита и находят характеристическую вязкость раствора полиэлектролита при данной ионной силе раствора /0. На основании уравнения (IV. 7) рассчитывают долю свободных противоионов в исходном растворе полиэлектролита ф и степень связывания (1 —ср) противоионов. При этом следует помнить, что в данном случае за исходную концентрацию полиэлектролита следует принимать концентрацию только солевых групп, полностью диссоциированных в водном растворе. Форма-записи результатов: Строят графики зависимости приведенной вязкости растворов эквимольных смесей ПМАК и ПЭГ от молекулярной массы ПЭГ для двух температур. Кроме того, оказалось, что и к другим типам соединений правило Ауверса — Скита применимо лишь до тех пор, пока боковые цепи не слишком длинны [8]. На рис. 46 приведены экспериментальные данные по температурам кипения стерео-изомерных диалкилцикланов. Прямые, выражающие зависимость разности температур кипения цис- и транс-форм: от общего числа атомов углерода в молекуле, приближаются к горизонтальной оси. Точки пересечения с этой осью и показывают то число атомов углерода (разное для диалкилцикланов разного типа), при котором правило Ауверса—Скита становится недействительным в отношении точек кипения. Аналогичные графики можно построить и для других констант — показателя преломления, плотности соединений. Выводы, сделанные из зависимости, приведенной на рис. 46, были подтверждены экспериментальным измерением констант высших диалкилцикланов. ![]() Значительного увеличения Значительному увеличению Значительном уменьшении Значительно изменяются Значительно облегчает Значительно отличаться Значительно превышает Значительно превосходит Значительно расширилась |
- |